
Journal of Technological Innovations

Est. 2020

Volume 1 Issue 4, October- December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Elevating System Reliability through

Observability in Cloud Native Applications

Savitha Raghunathan

Email: saveetha13gmail.com

Abstract:

The surge in cloud native technology adoption has fundamentally changed application development,

deployment, and management, highlighting the need for scalability, resilience, and agility. In this environment,

traditional monitoring is insufficient for ensuring the health and performance of cloud native applications,

characterized by their distributed nature and dynamic operation. This whitepaper focuses on the pivotal role of

observability in understanding and managing these complex systems. Dissecting observability's key

components—logs, metrics, and traces—provides a detailed overview of how development and operations

teams can gain real-time insights into system health, facilitating quick debugging and system optimization. This

paper aims to provide organizations with the knowledge to build a comprehensive observability framework

tailored to the unique demands of cloud native ecosystems.

Keywords: Observability, Alerting, Monitoring, Cloud Native, Logs, Metrics, Traces, Distributed Tracing

1. Introduction

The transition to cloud computing and the rise of cloud

native technologies have revolutionized the software

development lifecycle and operational practices.

Applications now leverage the cloud's scalable and elastic

nature, utilizing microservices architectures,

containerization, dynamic orchestration, and continuous

delivery models. These advancements, while beneficial,

introduce significant complexity in maintaining system

health and performance. The distributed architecture and

ephemeral resource allocation require shifting from

traditional monitoring to a more comprehensive

observability approach to ensure applications perform

reliably in production settings.

2. The Importance of Observability in Cloud

Native Applications

Fig 1: 3 Pillars of Observability [5]

Observability transcends traditional monitoring by

tracking expected issues (known unknowns) and providing

insights into unforeseen problems (unknown unknowns)

[4]. As shown in Figure 1, It involves collecting and

analyzing data from various system outputs—logs, metrics,

and traces [1] —to infer the system's internal state. This

capability is crucial in cloud native environments, where

http://jtipublishing.com/jti

Volume 1 Issue 4 , October - December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

applications' dynamic and distributed nature complicates

the detection and diagnosis of issues.

Figure 2 below, shows the overlap between the three pillars

of observability.

Fig 2: Overlap between Logs, Metrics, and Traces

Logs

Logs offer a chronological record of events within the

application or infrastructure, which is crucial for

troubleshooting and understanding system behavior.

Metrics

Fig 3: Metric sample from prometheus [1]

Metrics, numerical data collected over time, provide a

snapshot of system health, including performance

indicators like CPU usage, memory consumption, and

request latency.

Traces

Traces record a request's lifecycle across different system

components, which is essential for pinpointing

performance bottlenecks and understanding microservices

interactions.

3. Tools for Observability

The ecosystem offers a range of tools for enhancing

observability in cloud native applications, spanning open

source and commercial solutions. Key tools include

Prometheus for metric collection and alerting, Grafana for

data visualization, and distributed tracing systems like

Jaeger and Zipkin [9]. These tools cater to the unique

challenges of observing cloud native environments,

facilitating comprehensive data collection and analysis.

Selecting the right set of tools is crucial for effective

observability. Organizations should consider:

● Tools like Prometheus [9] are popular in cloud native

ecosystems for metrics and alerting due to their

dynamic service discovery capabilities.

● For log aggregation and analysis, solutions like ELK

(Elasticsearch, Logstash [9] , and Kibana), EFK

(Elasticsearch, Fluentd, and Kibana), or Loki are widely

used [10].

● For distributed tracing, Jaeger or Zipkin [9] can offer

deep insights into the behavior and performance

of microservices (Refer figure 4).

Fig 4: Jaeger trace showing three scans [2]

4. Implementing Observability into Cloud

Native Platforms

To effectively integrate observability into cloud native

platforms, organizations should:

Identify Key Data Points

The first step towards achieving comprehensive

observability in cloud native platforms is identifying key

data

http://jtipublishing.com/jti

Volume 1 Issue 4 , October - December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

points [3] that accurately reflect the system's health and

performance. This process involves:

Defining Critical Metrics: Identifying metrics critical to the

application's performance, such as latency, error rates,

throughput, and system resource utilization (CPU,

memory, disk I/O, network bandwidth).

Determining Log Data to Collect: Specifying the types of

log data that offer insights into system operations,

including error logs, transaction logs, and audit logs.

Understanding Tracing Requirements: Recognizing the

need to trace data to help understand the flow of requests

through the microservices architecture, including service

interaction patterns and latency issues.

This process requires collaboration between development,

operations, and business teams to ensure that the collected

data aligns with technical and business objectives and

provides a holistic view of system performance

and health.

Select Suitable Tools

Compatibility with Technology Stack: The chosen tools

should seamlessly integrate with the existing technology

stack, including programming languages, frameworks, and

infrastructure platforms.

Scalability and Performance: Tools must be capable of

scaling with the application, handling large volumes

of data without significant performance degradation.

Ease of Use and Integration: Tools that offer user-friendly

interfaces and easy integration with other observability and

development tools should be preferred, facilitating a

smooth workflow for developers and operators.

Community and Vendor Support: Tools with active

community support and robust vendor backing ensure

access to resources, documentation, and assistance for

troubleshooting and enhancements.

Instrument Applications

Instrumenting applications involves modifying or

configuring application code and infrastructure to collect

the necessary observability data:

Application-Level Instrumentation: Add libraries or agents

to application code that enable the emission of metrics,

logs, and traces. It involves using Prometheus client

libraries, OpenTelemetry SDKs for tracing, or logging

frameworks compatible with the chosen observability

platform.

Infrastructure and Network Instrumentation: Leverage

service mesh technologies like Istio or Linkerd to

automatically capture telemetry data from microservices

interactions without requiring changes to the application

code.

Configure Data Analysis and Alerting

After data collection is set up, the next step involves

configuring the analysis tools and setting up alerting

mechanisms:

Analysis and Visualization: Use tools like Grafana [5] to

create dashboards that provide real-time visualization of

metrics, logs, and traces. Customize these dashboards to

display key performance indicators and trends clearly and

concisely.

Alerting Mechanisms: Configure alerts based on

predefined thresholds for metrics or specific log events.

It involves using tools like Alertmanager [6][7] with

Prometheus or integrating the alerting capabilities of

commercial observability platforms. The alerting system

should be dynamic, allowing for easy adjustment of

thresholds as the system evolves.

Cultivate a Culture of Observability

Implementing tools and processes is only part of the

solution; cultivating a culture of observability within the

organization is equally important:

Continuous Learning: Providing training and resources for

teams to stay updated on best practices in

observability, understanding the tools, and interpreting the

data effectively.

Collaboration: Encouraging open communication and

collaboration between development, operations,

and business teams to ensure observability insights are

shared and acted upon. This includes regular review

http://jtipublishing.com/jti

Volume 1 Issue 4 , October - December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

sessions to discuss observability findings and implications

for system improvement.

Incorporating Feedback Loops: Using insights from

observability data to inform development practices,

system architecture decisions, and operational strategies.

This continuous feedback loop helps refine

observability practices and improve system reliability and

performance.

By following these guidelines, organizations can

effectively integrate observability into their cloud native

platforms, enhancing system reliability, performance, and

overall operational efficiency.

5. Best Practices for Maximizing

Observability

Effective observability in cloud native environments

requires:

● Integrating observability throughout the software

development lifecycle [11].

● Balancing detailed data collection with the management

of high-cardinality data.

● Automating alerts and anomaly detection to identify

issues swiftly [8].

● Combining logs, metrics, and traces for a holistic view

of system health [8].

● Ensuring scalability of observability tools and practices

to accommodate growing applications and

infrastructure.

6. Conclusion

In the evolving landscape of cloud native applications,

observability is critical for maintaining system reliability

and performance. By embracing observability,

organizations can navigate the complexities of modern

application architectures, ensuring their systems are

resilient, performant, and capable of meeting the dynamic

demands of the digital age. As technology progresses, the

strategies for implementing observability will continue

to advance, necessitating ongoing adaptation and learning

to harness its full potential.

References

[1] C. Sridharan, “Distributed Systems Observability,”

O’Reilly Media, Inc., Jul. 2018. Available:

https://www.oreilly.com/library/view/distributed-systems-

observability/9781492033431/ch04.html

[2] D. Mueller-Klingspor, “Using OpenTracing with

Jaeger to Collect Application Metrics in Kubernetes,” Red

Hat

Developer, Jul. 10, 2017.

https://developers.redhat.com/blog/2017/07/10/using-

opentracing-with-jaeger-to-

collect-application-metrics-in-

kubernetes#deploying_on_kubernetes

[3] A. Mukherji, “Four Steps to Implement an

Observability Strategy for Microservices,” DevOps.com,

Oct. 28, 2019.

https://devops.com/four-steps-to-implement-an-

observability-strategy-for-microservices/

[4] T. Treat, “Microservice Observability, Part 1:

Disambiguating Observability and Monitoring,” Brave

New Geek, Oct.

03, 2019. https://bravenewgeek.com/microservice-

observability-part-1-disambiguating-observability-and-

monitoring/

[5] M. Tan, “What’s next for Observability,” Grafana Labs,

Oct. 21, 2019.

https://grafana.com/blog/2019/10/21/whats-next-for-

observability/

[6] M. Burillo, “Kubernetes Monitoring with Prometheus:

AlertManager, Grafana, PushGateway (part 2).,” Sysdig,

Aug.

27, 2018. https://sysdig.com/blog/kubernetes-monitoring-

with-prometheus-alertmanager-grafana-pushgateway-

part-2/

[7] I. Huckova, “Step-by-step guide to setting up

Prometheus Alertmanager with Slack, PagerDuty, and

Gmail,”

Grafana Labs, Feb. 25, 2020.

https://grafana.com/blog/2020/02/25/step-by-step-guide-

to-setting-up-

prometheus-alertmanager-with-slack-pagerduty-and-

gmail/

[8] New Relic, In, “A Three-Phased Approach to

Observability,” Code Motion World, Jul. 2020. Available:

http://mediarepository.codemotionworld.com/docs/3-

phased-approach-to-observability.pdf

[9] G. Ouillon, “What Is Modern Observability?,” New

Relic, Inc., Jun. 18, 2020. https://newrelic.com/blog/best-

practices/what-is-modern-observability

[10] B. Huo and D. Ma, “Cloud Native Observability:

Log Management,” KubeSphere, Jun. 25, 2019.

http://jtipublishing.com/jti

Volume 1 Issue 4 , October - December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

https://kubesphere.io/conferences/logging/

[11] J. Wills, “Instrumentation, Observability &

Monitoring of Machine Learning Models,” InfoQ, May

28, 2019.

https://www.infoq.com/presentations/instrumentation-

observability-monitoring-ml/

http://jtipublishing.com/jti

