
Journal of Technological Innovations

Est. 2020

Hardware Prototyping using FreeRTOS while

developing AutoSAR compliant application software

using Simulink™

Roopak Ingole1, Benjamin Eckhart2

Email: roopak.ingole@cummins.com1, benjamin.eckhart@cummins.com2

Abstract:

This paper delves into an innovative approach to hardware prototyping for automotive software development within the
AutoSAR framework, utilizing FreeRTOS in conjunction with Simulink. The automotive industry's shift towards software-
centric systems necessitates reliable and efficient development practices. AutoSAR provides a standardized architecture that
simplifies this process, while Simulink enhances rapid prototyping capabilities through its model- based design environment.
FreeRTOS offers a lightweight, adaptable solution for real-time operating needs in embedded systems, supporting a broad
spectrum of microcontroller architectures. By integrating FreeRTOS with AutoSAR and Simulink, this research presents a
methodology that accelerates the development cycle, ensuring early validation of hardware and software components. The paper
highlights the seamless synergy between these technologies, outlining their practical applications and the substantial benefits they
offer in terms of development speed, software quality, and cost efficiency. The findings suggest that this integrated approach not
only streamlines the prototyping process but also sets the stage for further innovations in automotive technology development.
Through this exploration, we establish a robust framework for rapid prototyping, demonstrating significant advancements in the
evaluation and implementation of new automotive features, thus contributing to the ongoing evolution of the automotive
industry.

 1.INTRODUCTION

The automotive industry is currently undergoing a significant
transformation, with software becoming an integral part of
automotive development. AutoSAR (AUTomotive Open
System ARchitecture) [1] plays a pivotal role in this
evolution, providing a standardized framework that facilitates
the development of automotive software with high levels of
reliability and efficiency. Simulink, a MATLAB-based
graphical programming environment, further enhances this
process by offering a platform for model-based design, which
is instrumental in rapid prototyping. In the drive towards
electrification, stable electronic hardware is key. This paper
explores the method of Hardware prototyping using
FreeRTOS

while leveraging synergy between AutoSAR and Simulink in
the context of rapid prototyping, emphasizing the benefits,
methodology, and practical applications of integrating these
technologies.

2. ELECTRONIC HARDWARE DEVELOPMENT

For any new product, electronic hardware
development starts with deep research for an approximate
microcontroller. Microcontroller holds the brain of the
product. It becomes crucial to verify all the aspects of the
microcontroller during initial phases of hardware
development.With the growing complexity of
microcontrollers, push from simple compute engines
towards System on Chip (SoC) drives the need for
software platform capable of a higher level of validation.
Along with SoC, new products, especially for electrified
components for Automotive, require specialized
integrated circuits (ICs) [2], ex. Battery Management
Systems ICs. Most of the automotive chip manufacturers
provide AutoSAR compliant microcontroller
abstraction layer (MCAL) [3] and/or complex device
drivers (CDD) that can be used for faster board powerup
and verification of these functionalities. However, full
AutoSAR workflow requires toolchain and expertise

Volume 3, Issue 1, January – March 2022

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

explained in detail below.

Because of this reason, companies need more
efficient prototyping solutions, especially during the
hardware selection phase, so that the team can finalize the
hardware without worrying about the complexity of the
full AutoSAR stack and toolset. This is the area where
we found FreeRTOS shines.

A. FreeRTOS

FreeRTOS [4] is an open-source real-time operating

system (RTOS) designed for embedded systems.

This provides a small, efficient kernel designed for

microcontrollers and small microprocessors. It

allows developers to create embedded applications

with real-time requirements. This RTOS satisfies all

the critical functionalities required for hard real-time

applications. This is highly portable and supports a

wide range of microcontroller architectures and

development environments. This RTOS can be easily

adapted to various hardware platforms. Most of the

microcontroller manufacturers provide the controller

specific base software package specific to the

microcontroller. FreeRTOS has a large and active

community of developers and users. Maintainers of

this RTOS also provide middleware components and

libraries for additional functionalities needed for

embedded product development. Overall, FreeRTOS

offers a robust, lightweight, and highly flexible

solution for developing real-time embedded systems,

with features tailored to meet the requirements of a

wide range of critical applications

B. The AutoSAR Standard: Foundation for

Automotive Software Development

AutoSAR [1] [3] [5] is a global development

partnership of automotive interested parties

founded with the aim of creating and

establishing open standards for automotive E/E

(Electrical/Electronic) architectures. This

initiative enables the development of reusable

and transferable software and hardware

components, facilitating scalability and

flexibility in automotive systems design. The

standard encompasses a wide range of

automotive applications, from simple control

tasks to highly complex and safety-critical

systems. By abstracting hardware and software,

AutoSAR allows for the separation of

application development from underlying

hardware, a crucial feature required for rapid

prototyping. Typical AutoSAR framework is as

shown below: [6] Fig. 1. AutoSAR Layered

Architecture.

Fig. 1. AutoSAR Layered Architecture

In this layered architecture, AutoSAR prescribes the
standardized interfaces between each layer. This allows
the development of reusable components across the layers
of the system. AutoSAR also prescribes the standardized
methodology for designing and configuring the layers of
the software and standardized communication protocols
between ECUs.

Following the standardization, each architecture layer
supplier/developer provides the software stack and
configuration tool associated with it. Microcontroller
manufacturers, like Infineon, NXP, Texas Instruments,
Renesas, Analog Devices, provide the microcontroller
abstraction layer (MCAL). Middleware Base software
(BSW) layer developers like Vector, ETAS, KPIT [7]
provides software stack for all of these services, RTOS,
standard device drivers and communication stack along
with configuration tools. For the application layer
development, developers can use tools like Vector
DaVinci Developer [8], ETAS ISOLAR A [9], or
MathWorks’s Simulink AutoSAR Composer [10]. Once
all the tools are configured, tools like Vector DaVinci
Configurator [11] or ETAS ISOLAR B [9] are used to
connect everything and generate the code to compile and
produce the executable.

2. RAPID PROTOTYPING WITH SIMULINK IN AN

AUTOSAR CONTEXT

Simulink's model-based design [12] approach is ideally

suited for rapid prototyping in an AutoSAR framework.

http://jtipublishing.com/jti

Volume 3, Issue 1, January – March 2022

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Simulink AUTOSAR Composer [10] is a powerful tool

designed to streamline the development of automotive

software according to the AUTOSAR standard. This

software solution, developed by The MathWorks, enables

automotive engineers to efficiently design, simulate, and

implement AUTOSAR-compliant software architectures

directly within the Simulink environment. With Simulink

AUTOSAR Composer, users can model software

components, interfaces, and behavior using a graphical

interface, facilitating rapid prototyping and iteration.

Moreover, it provides comprehensive support for

AUTOSAR XML descriptions, ensuring compatibility

and compliance with industry standards. By integrating

seamlessly with other The MathWorks tools like

Embedded Coder, Simulink AUTOSAR Composer

enables automatic code generation for various target

platforms, expediting the deployment of embedded

automotive applications. Overall, Simulink AUTOSAR

Composer empowers automotive developers to accelerate

the development lifecycle, improve software quality, and

achieve greater efficiency in the creation of AUTOSAR-

compliant software architectures. This process not only

accelerates the development cycle but also enhances the

reliability of the software by enabling early detection and

correction of design errors. Furthermore, Simulink’s

integration with AutoSAR facilitates the simulation and

testing of automotive software within a virtual

environment, allowing for extensive validation before

deployment on actual hardware.

4.CHALLENGES WITH AUTOSAR TOOLS IN THE

CONTEXT OF RAPID HARDWARE PROTOTYPING

As described above, AutoSAR is an excellent
methodology for developing embedded automotive software;
however, it provides its own overheads and challenges while
adapting to early hardware development. Utilizing a full
AutoSAR stack requires all tools to be configured for the
chosen microcontroller sufficiently early to produce the
software. During the hardware development phase, hardware
engineers must receive early feedback on their functionality
and meet the requirements for the proposed application. In
parallel controls, application software teams would like to
start developing a control application geared towards
production functionality. This poses a chicken and egg
problem. If hardware and software are developed
sequentially, this will result in significant delays in product
development and loss of critical time. AutoSAR provides

significant advantages for production-intent software
development and provides the necessary flexibility for
prototyping existing products. However, for brand-new
products with brand-new microcontrollers, the process
usually starts with the MCAL layer being available from the
microcontroller manufacturer, and then BSW providers will

start configuring their middleware stack for a given
microcontroller. This usually takes months of effort before
the fully configured MCAL and BSW are provided to end
customers. While all of this configuration of the MCAL and
BSW was ongoing, the controls application team needed to
know the interfaces required to interact with the hardware.
This delays the overall hardware and software development
process. Along with this large investment in AutoSAR toolset
licenses is required. To solve this problem, reduce the cost,
and reduce the dependency between hardware and software,
I decided to explore open-source FreeRTOS for early
hardware prototyping while allowing the application team to
develop an AutoSAR application layer.

5. METHODOLOGY FOR INTEGRATING

AUTOSAR/SIMULINK WITH FREERTOS

Engaging in the integration of AutoSAR and Simulink,
our methodology embarks with an initial stage focused on
outlining the system's architectural design and pinpointing

essential components, as delineated by AutoSAR
guidelines. This phase is critical for laying the foundational
elements of our project. Moving forward, we harness the
capabilities of Simulink to craft and test simulations of
these components, aiming for unparalleled performance.
The next step involves transforming the Simulink models
into code that aligns with AutoSAR standards through the
use of sophisticated automatic code generation utilities. This
AutoSAR-ready code is then seamlessly woven into the
AutoSAR Runtime Environment (RTE), setting the stage
for exhaustive testing and validation. Emblematic of a truly
iterative process, our approach is characterized by recurrent
feedback mechanisms, ensuring the system's design is
continually refined and optimized.

In the context of pioneering a new Battery Management
System (BMS) Integrated Circuit (IC) for our forthcoming
battery product series, our team embarked on an evaluative
journey to discern the most suitable microcontroller and
BMIC, alongside the optimal configuration for our BMS's
electrical and electronic architecture. This endeavor
necessitated the creation of a swift hardware evaluation
platform coupled with the development of an AutoSAR-
compliant application layer. Our goal was to facilitate the
effortless deployment of applications across diverse
microcontroller environments, thereby enhancing our
project's adaptability and efficiency.

http://jtipublishing.com/jti

Volume 3, Issue 1, January – March 2022

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

AutoSAR suggested a Top-Down or Bottom-Up
approach Fig. 2. Workflows for AUTOSAR [13], we took
both the approaches at the same time. The process we
developed for BMS hardware and software development is
as shown in Fig.
3. Autosar application in Simulink integrated with FreeRTOS

.

 device drivers, and a communication stack. To align closely
with our microcontroller's architecture, we opted for the
FreeRTOS port, with a specific focus on the version tailored
for Infineon's TC27x series [16], which served as our initial
benchmark. This choice was strategic, considering our
ultimate target: the Infineon TC377 microcontroller. Upon
selecting this platform, we meticulously configured the
RTOS to suit the intricacies of the TC377, paying special
attention to its multi-core capabilities.

Fig. 2. Workflows for AUTOSAR

A. Application Software Development

In the pursuit of crafting sophisticated application software,
our team turned to the Simulink AutoSAR Composer [14]
[15]. This powerful tool enabled us to design a
comprehensive application layer, complete with all necessary
components and their configurations. We meticulously
implemented interfaces among these components and
seamlessly integrated a AutoSAR dictionary within the
Simulink framework. AutoSAR dictionary provided a user
interface to capture AutoSAR specific information e.g. ports,
datatypes, calibration, and internal behavior. Leveraging the
simulation capabilities of Simulink, we conducted thorough
verifications of each component's functionality and their
interconnections

 Further enhancing our development process, we

incorporated a plant model crafted in Simscape. This
inclusion facilitated close-loop simulations, allowing us to
rigorously test and confirm the effectiveness of our control
strategies. Upon successful validation, the Simulink Coder
feature was employed to translate our models into AutoSAR-
compliant C code, generate component and composition

ARXMLs, and produce A2L artifacts for each component.

To orchestrate the management of this complex
application project, our strategy encompassed the utilization
of Simulink Project and GitLab. This approach not only
streamlined code versioning but also fostered collaboration
among our developers, ensuring a cohesive and efficient
development process. The resultant C code emerged as a
pivotal element, primed for integration with the RTE and
BSW layers of AutoSAR.

Our collaboration with The MathWorks was instrumental
in this endeavor, particularly in the implementation and
demonstration of multi-instance software component
capabilities within Simulink. This feature proved
indispensable for applications such as the Battery
Management System, which requires the execution of
identical calculations across multiple cells within a battery
pack, showcasing our commitment to innovation and
precision in software development for advanced systems.

B. Base Software Development

Our base software architecture encompasses a real-time

operating system (RTOS), middleware components,

Given the TC377's multi-core architecture, our strategy

involved deploying the RTOS exclusively on Core0,

while opting to manage the remaining cores using a bare

metal approach. This decision allowed us to tailor the

system's performance and resource allocation more

precisely. To facilitate communication with Battery

Management System Integrated Circuits (BMICs) and

host computers, we crafted bespoke device drivers for

CAN, SPI, UART, and Ethernet interfaces.

Our integration efforts extended to incorporating a
lightweight IP stack, leveraging Vector's open-source XCP
stack [17], and implementing a simple shell via the UART
interface. For inter-core communication, we utilized
straightforward, memory-based techniques, ensuring
efficient data transfer between cores. This foundational
software layer was developed concurrently with the
application software, ensuring a harmonious integration
process.

With the base software infrastructure firmly in place,
complete with fully functional interfaces for device
drivers and the RTOS, our next course of action revolves
around bridging the Base Software (BSW) and
Application Software (ASW) through the Real-Time
Environment (RTE). This integration is pivotal, as it
promises to enhance the system's overall functionality and
performance, laying a solid groundwork for advanced
operational capabilities.

C. RTE Generation

In our development process, instead of employing

http://jtipublishing.com/jti

Volume 3, Issue 1, January – March 2022

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

formal AutoSAR tools for configuring the Base Software
(BSW) and automatically generating the Real-Time
Environment (RTE), we took a different approach. We
capitalized on the auto- generated RTE stub functions
provided by Simulink Coder. These stub functions served
as the foundation upon which we manually coded the
necessary connections, effectively bridging the BSW with
the application layer.

The decision to hand-code these stub functions was
strategic, driven by the standardized interfaces of our base
software. These standardized interfaces significantly
streamlined the realization of the stub functions, allowing
for a more direct and efficient integration process. This
approach not only facilitated a smoother melding of the
BSW with the application layer but also underscored our
flexibility and adaptability in software development,
ensuring that even without the direct use of formal
AutoSAR tools, we could achieve a seamless and robust
integration.

D. Compilation

For the compilation phase, we harnessed the
capabilities of the TASKING TriCore Integrated
Development Environment (IDE) [18], which served as
the central hub for amalgamating the project's
components: RTOS, BSW, RTE, and Application
Software (ASW). Within the TASKING

TriCore IDE, we integrated the automatically generated
ASW code, manually coded RTE, custom middleware,
and configured both the Microcontroller Abstraction
Layer (MCAL) [19] and RTOS into a singular project,
executing a comprehensive compilation of the code.

Upon successful compilation, which culminated in
the creation of the final executable files (.elf and .map),
our next endeavor was to generate A2L files. This file is
essential for calibration tool purposes, facilitating the
precise mapping of all variables to their respective
memory locations through CANape's A2L mapping
functionality [20]. The culmination of this meticulous
process resulted in two key outputs: the executable file
(.elf) and the comprehensive A2L file (.a2l), marking a
significant milestone in our project's development.
Whole integration workflow is depicted in Fig. 3.
Autosar application in Simulink integrated with
FreeRTOS.

E. . Verification & Validation

Prior to the deployment on our tailor-made hardware
platform, it was imperative to validate the capabilities of both
the microcontroller and the Battery Management System
Integrated Circuit (BMIC) using the evaluation boards
provided by the chip manufacturer. For the Infineon TC377
microcontroller, the KIT_A2G_TC377 [21] evaluation board
was employed, while the TLE9012DQU Evaluation Board
[22] and TLE9015DQU Evaluation Board [23] were utilized
for the Infineon's BMIC [2]. These evaluation kits, coupled
with minimal electronic assembly, swiftly set the stage for
our verification platform Fig. 4. Hardware Evaluation Test
Setup.

Employing Infineon’s Memtool [24], we proceeded to
flash the compiled binary onto the target microcontroller.
This step was crucial for initiating the verification process.
Using a UART console and Vector’s Canape, we were able
to meticulously verify all the requisite functionalities of both
the BMICs and microcontrollers. This process allowed us to
assess the BMIC communication efficiency and the
robustness of the multi-core processing capabilitiesThe
verification phase, conducted with these tools and platforms,
provided us with a comprehensive understanding of the
system's performance, ensuring that all components
functioned in harmony and met our stringent requirements.
This meticulous approach to validation was instrumental in
paving the way for the successful implementation of our
custom-designed hardware platform, ensuring a high degree
of reliability and performance in real-world applications.

http://jtipublishing.com/jti

Volume 3, Issue 1, January – March 2022

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

6. RESULTS

Embarking on this development journey enabled us to
establish a robust framework for both hardware and
software prototyping, marking a significant milestone in
our engineering endeavors. A pivotal aspect of our success
was the validation of a system comprising eight Battery
Management System Integrated Circuits (BMICs)
interconnected via ISO UART in a ring topology. To
emulate the cells, we used Battery Cell emulators along with
real coin cells. This venture, characterized as new, unique,
and difficult (NUD), posed a considerable challenge,
especially given the ambitious timeframe for validation.

Furthermore, our validation efforts extended to the
verification of ISO SPI connectivity, the exploitation of
multi- core processing capabilities, and the implementation
of crucial cell-specific algorithms designed to manage up to
180 cells per battery pack. This comprehensive approach
culminated in the development of a next-generation
Battery Management System (BMS) platform, fully
equipped with both the hardware and software
specifications required to propel our projects forward.

This streamlined process not only facilitated the rapid
verification of all critical NUDs but also enabled the
efficient derivation of requirements within an
unprecedented timeframe. Under conventional
circumstances, utilizing a standard AutoSAR-based
development approach might have extended the
verification phase to as long as 18 months. However,
thanks to our innovative methodology, we managed to
significantly expedite this process, achieving our objectives
within a mere 6-8 months.

A key factor in the acceleration and cost-efficiency of our
development process was the strategic utilization of new
open-source tools alongside existing resources from the
Cummins software library. By leveraging FreeRTOS for
our real-time operating system needs—a platform
available at no cost for evaluation purposes—we avoided
the financial and temporal expenditures associated with
formal AutoSAR tooling. Moreover, our enterprise
licensing agreement with The MathWorks facilitated
unrestricted access to MATLAB/Simulink for a broad
spectrum of electronic control system development tasks,
without incurring additional licensing fees. This strategic

decision negated the necessity for expensive AutoSAR
tools such as Vector’s DaVinci Developer and
Configurator or ETAS ISOLAR A/B, yielding substantial
cost savings during the crucial early phases of
development. Thus, our innovative approach not only
streamlined the validation process but also enabled
informed decision-making regarding the selection of
microcontrollers, BMICs, and the production toolchain,
setting a new benchmark for efficiency and effectiveness
in our development practices.

7. PRACTICAL APPLICATIONS, BENEFITS AND

FUTURE ENHANCEMENT

The synergy of AutoSAR with Simulink for rapid

prototyping unveils a horizon of possibilities, extending
from

the sophistication of hydrogen Fuel-Cells, Advanced Driver
Assistance Systems (ADAS), Autonomous Driving System
(ADS) and the intricacies of powertrain control to the
dynamic realms of infotainment and telematics. This
methodology of swift hardware and software prototyping is a
game-changer, significantly curtailing the time-to-market for
introducing novel automotive features while upholding
exemplary standards of software quality and adherence to
industry benchmarks. Furthermore, the capability to emulate
and scrutinize automotive software within a virtual milieu
drastically diminishes development expenditures and
circumvents the reliance on costly prototypes.

In the exploratory stages of groundbreaking technology
or throughout the nascent phases of new product
development, this streamlined process offers vital time and
cost savings for organizations. It propels the acceleration of
the incubation period for new products, thereby fostering
innovation and rapid market entry. Importantly, this approach
is not confined to Battery Management Systems (BMS) but
is equally applicable across a spectrum of electronic hardware
development endeavors. The advent of automation and a
modicum of standardization in the processes of RTE
generation and compilation could further refine this
methodology. By minimizing manual interventions, these
enhancements have the potential to significantly accelerate
the innovation trajectory for new products, heralding a new
era of efficiency and creativity in automotive development.

8. CONCLUSION

The culmination of our exploration into the synergistic
integration of AutoSAR and Simulink underscores a
transformative approach to rapid prototyping within the
automotive sector. This fusion of AUTOSAR's standardized
framework with Simulink's robust model-based design
capabilities empowers engineers to streamline the
development cycle. This process ensures the delivery of
software that not only adheres to but also surpasses industry

http://jtipublishing.com/jti

Volume 3, Issue 1, January – March 2022

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

benchmarks for quality. The strategic incorporation of
FreeRTOS as the middleware for the Base Software (BSW)
has markedly expedited the evaluation phase of technological
ventures, significantly benefiting the incubation period of
novel product development.

This collaboration between AutoSAR and Simulink
extends beyond mere efficiency and quality enhancement; it
serves as a beacon for innovation and technological
progression in an industry characterized by increasingly
complex systems. As automotive technologies evolve, the
integrated approach offered by AutoSAR, Simulink, and
FreeRTOS will become increasingly indispensable. These
tools collectively forge a path towards the future, equipping
developers with the means to navigate the complexities of
automotive system design with greater agility and foresight.
In essence, the integration of these platforms not only meets
the current demands of automotive software development but
also anticipates the future needs of an industry at the forefront
of technological innovation.

9. REFERENCES

[1] AUTOSAR, "AUTOSAR," [Online].

Available: https://www.autosar.org/.

[2] Infineon Technologies AG, "Battery management ICs |

Infineon’s battery management ICs offer an optimized

solution for cell monitoring and balancing," [Online].

Available:

https://www.infineon.com/cms/en/product/battery-

management-ics/.

[3] AUTOSAR, "AutoSAR Classic Platform - MCAL

Layer," [Online]. Available:

https://www.autosar.org/search?tx_solr%5Bfilter%5D%5

B0%5D=c ategory%3AR22-

11&tx_solr%5Bfilter%5D%5B1%5D=platform%3ACP&

tx_solr%5

Bfilter%5D%5B3%5D=arhitectureElement%3AMicrocon

troller+Dri

vers&tx_solr%5Bfilter%5D%5B4%5D=workingGroup%

3AWG- CP-MCL&tx_solr%5Bq%5D.

[4] Amazon Web Services, Inc., "The FreeRTOS™

Kernel," [Online]. Available:

https://www.freertos.org/RTOS.html.

[5] AUTOSAR, "Autosar Classic Platform," [Online].

Available:

https://www.autosar.org/standards/classic-platform.

[6] A. Abdelhakeem, "Classic Autosar - Quick Review.

STACKS OVERVIEW | by abdullah abdelhakeem,"

[Online]. Available:

https://medium.com/@AbdullahAbdelhakeem22/classi

c-autosar- quick-review-d10ef2a13678.

[7] KPIT Technologies, "Autosar Solutions," [Online].

Available: https://www.kpit.com/solutions/autosar/.

[8] Vector Informatik GmbH, "DaVinci Developer

Classic," [Online]. Available:

https://www.vector.com/int/en/products/products-a-

z/software/davinci-developer-classic/#.

[9] ETAS Inc., "ISOLAR," [Online].

Available:

https://www.etas.com/en/products/isol

ar.php.

[10] The Mathworks, Inc., "System Composer -

MATLAB," [Online]. Available:

https://www.mathworks.com/products/system-

composer.html.

[11] Vector Informatik GmbH, "DaVinci Configurator

Classic," [Online]. Available:

https://www.vector.com/int/en/products/products-a-

z/software/davinci-configurator-classic/.

[12] The Mathworks, Inc., "Simulink - Simulation and

Model-Based Design - MATLAB," [Online].

Available:

https://www.mathworks.com/products/simulink.html

.

[13] D. Dandotiya, "Software Architecture & AUTOSAR for

Automotive Embedded system," [Online]. Available:

https://www.pathpartnertech.com/software-architecture-

autosar-for- automotive-embedded-system/.

[14] The Mathworks, Inc., "AUTOSAR Blockset -

MATLAB," [Online]. Available:

https://www.mathworks.com/products/autosar.html.

[15] The Mathworks, Inc., "Workflows for AUTOSAR,"

[Online]. Available:

https://www.mathworks.com/help/autosar/ug/workflow-

for-autosar.html.

[16] A. Tengg, "FreeRTOS 7.1 Port for Aurix (TC27x), using

Free Entry Toolchain," [Online]. Available:

https://interactive.freertos.org/hc/en-

us/community/posts/210026366-FreeRTOS-7-1-Port-

for-Aurix- TC27x-using-Free-Entry-

Toolchain?_ga=2.118106369.926239537.1710598264-

626888096.1709996142.

[17] Vector Informatik GmbH, "XCP Sample

Implementation," [Online]. Available:

https://support.vector.com/kb?id=kb_article_view&syspar

m_article=

KB0011316&sys_kb_id=6351582c87706110cd36fd99ce

bb35e9&sp a=1.

http://jtipublishing.com/jti
http://www.autosar.org/
http://www.infineon.com/cms/en/product/battery-management-ics/
http://www.infineon.com/cms/en/product/battery-management-ics/
http://www.autosar.org/search?tx_solr%5Bfilter%5D%5B0%5D=c
http://www.autosar.org/search?tx_solr%5Bfilter%5D%5B0%5D=c
http://www.freertos.org/RTOS.html
http://www.autosar.org/standards/classic-platform
https://medium.com/%40AbdullahAbdelhakeem22/classic-autosar-
https://medium.com/%40AbdullahAbdelhakeem22/classic-autosar-
http://www.kpit.com/solutions/autosar/
http://www.vector.com/int/en/products/products-a-
http://www.etas.com/en/products/isolar.php
http://www.etas.com/en/products/isolar.php
http://www.mathworks.com/products/system-
http://www.vector.com/int/en/products/products-a-
http://www.mathworks.com/products/simulink.html
http://www.mathworks.com/products/simulink.html
http://www.pathpartnertech.com/software-architecture-autosar-for-
http://www.pathpartnertech.com/software-architecture-autosar-for-
http://www.mathworks.com/products/autosar.html
http://www.mathworks.com/help/autosar/ug/workflow-

Volume 3, Issue 1, January – March 2022

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

[18] TASKING, "TRICORE VX SOFTWARE

DEVELOPMENT TOOLS," [Online]. Available:

https://www.tasking.com/taxonomy/term/223.

[19] TASKING, "HOW TO BUILD YOUR ILLD

APPLICATION WITH TASKING VX-TOOLSET FOR

TRICORE," [Online]. Available:

https://resources.tasking.com/sites/default/files/2021-

02/How%20to%20build%20your%20iLLD%20applicati

on%20with
%20TASKING%20VX-
toolset%20for%20TriCore_WEB.pdf.

[20] Vector Informatik GmbH, "How do I create an

A2L file from CANape?," [Online]. Available:

https://cdn.vector.com/cms/content/know-

how/_application- notes/AN-IMC-1-

024_How_do_I_create_an_A2L_file_from_CANa

pe.pdf.

[21] Infineon Technologies AG,

"KIT_A2G_TC377_5V_TRB_S," [Online].

Available:

https://www.infineon.com/cms/en/product/evaluatio

n- boards/kit_a2g_tc377_5v_trb_s/.

[22] Infineon Technologies AG,

"TLE9012DQU_DTR_BMS2," [Online].

Available:

https://www.infineon.com/cms/en/product/evalua

tion- boards/tle9012dqu_dtr_bms2/.

[23] Infineon Technologies AG,

"TLE9015DQU_TRX_BRG," [Online]. Available:

https://www.infineon.com/cms/en/product/evaluation-

boards/tle9015dqu_trx_brg/.

[24] Infineon Technologies AG, "Infineon Free Tools,"

[Online]. Available:

https://www.infineon.com/cms/en/tools/aurix-tools/free-

tools/infineon/.

http://jtipublishing.com/jti
http://www.tasking.com/taxonomy/term/223
http://www.infineon.com/cms/en/product/evaluation-
http://www.infineon.com/cms/en/product/evaluation-
http://www.infineon.com/cms/en/product/evaluation-
http://www.infineon.com/cms/en/product/evaluation-
http://www.infineon.com/cms/en/product/evaluation-
http://www.infineon.com/cms/en/tools/aurix-tools/free-

