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Abstract: 

 

This research paper examines the utilization of machine learning methodologies to conduct a comparative analysis 

between bottom-up and top-down approaches regarding climate credit risk modeling. The significance of evaluating 

climate-related credit risks is increasingly acknowledged by financial institutions, leading to a crucial decision between 

granular, asset-level models and aggregate, portfolio-level models. Our proposed framework utilizes a combination of 

supervised and unsupervised learning algorithms to methodically examine and assign attributes to distinctions between 

these two modeling paradigms. By using predictive models and implementing clustering and dimensionality reduction 

techniques, this study showcases the potential of machine learning in augmenting comprehension of model disparities 

and bolstering the resilience of climate credit risk evaluations. The potential of this approach for model validation and 

benchmarking is exemplified by a case study conducted on the oil and gas industry. In conclusion, we will address 

optimal strategies, potential avenues for future research, and the significance of integrating bottom-up and top-down 

approaches to achieve comprehensive risk management. 
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Introduction: 

Financial institutions face substantial challenges due 

to climate change, as the inherent risks and 

uncertainties associated with a shifting climate can 

significantly affect borrowers' creditworthiness and 

financial markets' stability. Developing robust 

methodologies for assessing and quantifying potential 

credit losses arising from climate-related factors is 

imperative for banks and other financial institutions to 

manage these risks effectively. Two main methods are 

used to model climate credit risk: bottom-up models 

that focus on individual borrowers and capture the 

specific effects of climate scenarios and top-down 

models that estimate the overall risk exposure based 

on the composition and characteristics of the loan 

portfolio. Although both approaches have advantages, 

they can occasionally yield contrasting outcomes, 

posing challenges for risk managers in reconciling and 

interpreting the results. Machine learning techniques 

present a promising opportunity to compare and 

analyze the disparities between bottom-up and top-

down models in this context. This allows financial 

institutions to understand better the factors that 

influence risk and make more knowledgeable 

decisions. Institutions can explore the relationships 

between model inputs, assumptions, and outputs, 

identify key sources of uncertainty, and develop more 

robust and reliable climate credit risk assessments by 

utilizing supervised and unsupervised learning 

algorithms. This white paper presents a structure for 

machine learning to compare bottom-up and top-down 
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climate credit risk models. This will be done by 

examining a case study in the oil and gas industry to 

demonstrate the advantages and difficulties associated 

with this method. 

 

Top-Down Portfolio Modeling Approach: 

 

Assessing aggregate climate risk exposure based on 

portfolio composition: The objective of top-down 

portfolio modeling approaches is to evaluate the 

comprehensive climate risk exposure of a financial 

institution's loan book or investment portfolio by 

examining its composition and overall characteristics. 

Typically, this process entails dividing the portfolio 

into different groups based on industry, sector, or 

geographic region. The average risk profile of each 

group is then estimated using historical data, expert 

opinion, or market benchmarks. For instance, a 

financial institution may compute the ratio of its loan 

allocation to industries with high carbon emissions, 

such as oil and gas, utilities, or transportation. 

Subsequently, it may employ sector-specific risk 

factors or sensitivity analysis to assess the potential 

consequences of climate-related disturbances or policy 

alterations in these sectors. One notable benefit of 

employing top-down methodologies is their ability to 

offer a straightforward and effective means of 

evaluating a vast and varied portfolio for climate-

related risks without necessitating comprehensive 

information regarding individual assets or borrowers. 

Top-down models can efficiently identify areas of 

concentrated risk or vulnerability to specific climate 

scenarios by examining the distribution of exposures 

across different segments at a macro-level. This can be 

especially advantageous for institutions with intricate 

or diverse portfolios, where conducting a 

comprehensive bottom-up analysis may be unfeasible 

or financially burdensome. 

 

Estimating shifts in average industry/sector risk 

under climate scenarios: Top-down models 

commonly utilize scenario analysis to assess the 

potential effects of climate change on a portfolio. This 

involves estimating the possible changes in the 

average risk profile of various industries or sectors 

over time. The process entails establishing a collection 

of credible climate scenarios, exemplified by the 

Network for Greening the Financial System (NGFS), 

delineating various trajectories for crucial factors, 

including greenhouse gas emissions, temperature 

escalation, policy measures, and technological 

advancements. The model estimates the probable 

alterations in credit risk drivers, such as revenue, costs, 

asset values, or market demand, for various sectors in 

each scenario. These estimations are based on the 

sensitivity of these drivers to climate-related factors. 

Risk estimates at the sector level can be obtained from 

various sources, such as econometric models, expert 

interviews, or market data about similar companies or 

assets. Subsequently, the model consolidates these risk 

estimates throughout the portfolio to compute each 

scenario's comprehensive anticipated loss or capital 

prerequisites [2, 3]. 

 

Limitations compared to bottom-up modeling: 

Although top-down approaches provide a practical 

and scalable method for evaluating climate risk 

exposure, they differ significantly from bottom-up 

modeling regarding essential limitations. A significant 

concern revolves around the possibility of averaging 

or diversification effects concealing a portfolio's 

actual degree of risk. Using sector-level risk estimates 

in top-down models may result in an inadequate 

representation of the extensive vulnerability and 

resilience exhibited by individual firms or assets 

within a specific sector. This can result in an 

underestimation of the risk associated with specific 

exposures, especially those with a high degree of 

unique risk or are highly sensitive to climate factors. 

Using top-down risk management and decision-

making approaches may yield fewer practical insights 

due to their lack of direct association between climate 

risks and individual borrowers or transactions. 

Financial institutions may struggle to effectively target 

their risk mitigation efforts or engage with clients to 

support their transition plans without a detailed 

understanding of the specific assets or counterparties 

that are most vulnerable. On the other hand, bottom-

up models that encompass the unique risk profiles of 

individual exposures have the potential to offer more 

accurate and pertinent insights for guiding portfolio 

composition and effectively managing climate-related 

risks in the long run. 

 

Machine Learning for Comparative 

Model Analysis: 
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A. Supervised learning to predict bottom-up results 

from top-down inputs 

Supervised learning techniques can be utilized to 

reconcile the disparity between top-down and bottom-

up climate credit risk models to forecast asset-level 

outcomes based on portfolio-level inputs. The 

objective is to develop a machine learning model 

capable of effectively predicting the consequences of 

a comprehensive bottom-up model by utilizing solely 

the aggregate risk factors and scenario assumptions 

accessible to a top-down model. To accomplish this, 

creating a training dataset that encompasses both the 

inputs from higher levels and the corresponding 

outputs from lower levels for a wide range of 

exposures is necessary. One possible approach is to 

apply the bottom-up model to a portion of the portfolio 

or utilize historical data from past risk evaluations. To 

ensure the model can effectively generalize to new 

inputs, it is crucial to ensure that the training data 

encompasses a diverse range of scenarios and risk 

profiles. 

 

Feature engineering: An analysis of portfolio metrics 

about underlying factors. Transforming the raw top-

down inputs into features that can accurately predict 

the bottom-up risk measures is crucial in constructing 

the supervised learning model. The process referred to 

as feature engineering necessitates a comprehensive 

comprehension of the fundamental risk factors and 

their interconnections with the existing portfolio 

metrics. An illustrative scenario involves utilizing top-

down data about the sector composition of a loan 

portfolio in conjunction with aggregate scenario 

variables encompassing carbon prices, energy 

demand, and policy stringency. To establish a 

connection between these inputs and the underlying 

factors influencing credit risk, it is possible to compute 

sector-level averages or distributions of significant 

financial ratios, such as debt-to-equity, profitability, or 

asset turnover. Additionally, we can incorporate 

interaction terms that measure the degree to which 

each sector is influenced by particular scenario 

variables, such as the carbon intensity of its activities 

or the responsiveness of its revenues to changes in 

energy prices. Feature engineering aims to extract the 

most pertinent and enlightening signals from the 

primary data while simultaneously converting them 

into a format that aligns with the input prerequisites of 

the secondary model. The process may encompass 

various methodologies, including normalization, 

discretization, or dimensionality reduction, contingent 

upon the characteristics of the data and the particular 

learning algorithm employed. 

 

Model training and evaluation: After creating the 

feature matrix, we can utilize a supervised learning 

model to forecast the initial risk measures based on the 

inputs from the top down. The selection of an 

algorithm is contingent upon various factors, including 

the intricacy of the association between features and 

targets, the magnitude and caliber of the training data, 

the comprehensibility of the results, computational 

effectiveness, and resilience. For instance, linear 

models such as ordinary least squares or ridge 

regression are appropriate for analyzing 

straightforward, linear associations. In contrast, 

decision trees, random forests, and neural networks 

can capture non-linear patterns and feature 

interactions. Cross-validation techniques can be 

employed to estimate the predictive accuracy outside 

the sample and quantify the degree of agreement 

between predicted and actual bottom-up measures to 

assess the model's performance. This can be achieved 

using mean squared error, R-squared, or agreement 

index metrics. It is possible to identify the optimal 

combination that achieves a harmonious equilibrium 

between bias and variance by exploring various 

feature sets, model architectures, and hyperparameter 

configurations. This combination is crucial for 

generating stable and reliable predictions across 

diverse scenarios. The ultimate objective is to 

construct a model that can faithfully replicate the 

insights derived from the bottom-up approach while 

exhibiting enhanced speed and ease of execution on 

extensive and intricate portfolios. 

 

Unsupervised learning to identify critical 

drivers of model divergence 

Unsupervised learning methodologies have the 

potential to facilitate the identification of primary 

factors contributing to the divergence observed 

between bottom-up and top-down climate credit risk 

models. This is achieved by exploring patterns and 

structures within the data without needing 

predetermined labels or targets. By utilizing clustering 

algorithms or dimensionality reduction techniques on 
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the inputs and outputs of the model, it becomes 

possible to reveal latent clusters or dimensions that 

elucidate the disparities in risk assessments among 

various methodologies. This analysis has the potential 

to yield significant insights regarding the origins of 

model uncertainty and contribute to endeavors aimed 

at aligning or reconciling the outcomes. 

 

Clustering analysis of bottom-up vs. top-down PD 

projections: A comparative analysis of clustering 

techniques for bottom-up and top-down PD 

projections. Grouping exposures based on their 

similarity in bottom-up and top-down probability of 

default (PD) projections can be achieved using 

clustering algorithms, such as k-means, hierarchical 

clustering, or DBSCAN. The identification of critical 

factors that differentiate exposures with high 

divergence from those with low divergence between 

the two models can be achieved by comparing the 

composition and characteristics of the resulting 

clusters. For instance, it is possible to observe that 

specific sectors, regions, or risk factors consistently 

exhibit more significant disparities in PD estimates, 

indicating that these dimensions are the primary 

drivers of the overall variations in the model. 

 

Dimensionality reduction techniques (e.g., PCA) 

Dimensionality reduction: Diffusion techniques, 

such as Principal Component Analysis (PCA), 

Dimensionality reduction methods, such as Principal 

Component Analysis (PCA), t-SNE, or autoencoders, 

can effectively represent and condense the complex 

and multi-dimensional domain of model inputs and 

outputs into a more concise and understandable 

format. These methods can uncover the underlying 

factors or gradients that account for the disparities 

between bottom-up and top-down risk measures by 

projecting the data onto a lower-dimensional subspace 

that captures the most significant patterns of variation. 

As an illustration, using Principal Component 

Analysis (PCA) on a dataset comprising scenario 

variables and PD projections may reveal that the initial 

principal component aligns with a comprehensive 

transition risk factor. In contrast, the subsequent 

component encompasses regional disparities in policy 

stringency or technology adoption. 

Case study: 

 

A Top–Down Bottom–Up Modeling Approach to 

Climate Change Policy Analysis: 

The research conducted by Tuladhar et al. (2009) titled 

"A Top-Down Bottom-Up Modeling Approach to 

Climate Change Policy Analysis" presents an 

innovative investigation into the macroeconomic 

consequences of climate change policies in the United 

States. This study achieves this by incorporating both 

top-down and bottom-up modeling methodologies. 

This hybrid model integrates a comprehensive 

examination of the electricity sector in the United 

States, with a particular focus on energy technologies 

and their potential for reducing emissions. 

Additionally, it incorporates a more comprehensive 

economic analysis that considers the effects of climate 

policies on the country's GDP, employment, and 

investment throughout the economy. This 

comprehensive approach enables a detailed evaluation 

of the interaction between technological capabilities 

and policy measures in addressing climate change, 

emphasizing the sector's crucial role in efforts to 

mitigate the effects. 

The research offers valuable perspectives on the cost-

effectiveness of different climate policies, such as 

carbon pricing and renewable energy mandates. This 

statement highlights the benefits of implementing 

market-based abatement incentives that integrate 

adaptation mechanisms, such as emissions trading. 

The results emphasize the significance of formulating 

policies that utilize market mechanisms to reduce 

emissions while effectively minimizing economic 

disturbances. 

The study demonstrates the importance of 

technological innovation and various measures to 

address climate targets by analyzing the relationship 

between technological limitations and policy choices. 

The comprehensive perspective offered by the 

integrated model provides valuable insights into the 

intricate interplay between economic policies and 

technological advancements. This framework assists 

policymakers in formulating strategies that promote 

sustainable economic growth and facilitate effective 

climate action [1]. 

 

 

Best Practices and Future Research 

Directions: 
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Hybrid bottom-up/top-down approaches: There is a 

growing trend in climate credit risk modeling to adopt 

hybrid approaches that integrate the detailed and 

accurate characteristics of bottom-up models with the 

effectiveness and scalability of top-down methods. 

Financial institutions can balance accuracy and 

practicality by employing bottom-up analysis to the 

most significant or uncertain exposures while utilizing 

top-down techniques to cover the remaining portfolio. 

Hybrid methodologies can additionally enable the 

comparison and evaluation of diverse models, thereby 

aiding in detecting and resolving any disparities or 

incongruities. 

 

Incorporating asset-level data in top-down models: 

An additional avenue for enhancing the precision and 

pertinence of top-down climate credit risk models 

involves integrating more detailed, asset-level 

information about the attributes and susceptibilities of 

individual exposures. This may entail integrating 

geospatial data about the geographical location and 

physical risk characteristics of assets or utilizing 

machine learning methodologies to group exposures 

according to their resemblance to financial risk 

factors. By surpassing the limitations of sector-level 

aggregation, top-down models can more effectively 

capture the diversity and unique risks present in 

portfolios while preserving their computational 

efficiency. 

 

Leveraging ML for dynamic model updating and 

monitoring: The continuous evolution of climate 

risks and the availability of new data necessitate the 

dynamic updating and monitoring of credit risk 

models to maintain their accuracy and relevance. 

Machine learning methodologies can significantly 

contribute to this procedure by autonomously 

identifying patterns and anomalies within the data, 

adjusting model parameters in response to dynamic 

circumstances, and identifying potential concerns or 

incongruities for subsequent examination. By 

continuously using machine learning techniques to 

validate and enhance their models, financial 

institutions can guarantee the durability and 

dependability of their climate risk assessments, even 

when confronted with unparalleled challenges and 

uncertainties. 

 

Conclusion:  

The incorporation of machine learning techniques in 

climate credit risk modeling, specifically by 

employing hybrid bottom-up/top-down 

methodologies, integrating asset-level data, and 

dynamically updating models, signifies a notable 

progression in the domain. These methodologies 

provide a thorough and subtle comprehension of 

climate risks, facilitating more precise evaluations and 

well-informed decision-making. Further investigation 

is warranted to delve into and enhance these 

methodologies, guaranteeing that the models possess 

resilience, scalability, and the ability to adjust to the 

dynamic characteristics of climate change and its 

financial ramifications. Implementing these optimal 

methods is essential to establish robust financial 

systems that can withstand environmental 

uncertainties. 
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