
Journal of Technological Innovations

Est. 2020

Volume 2 Issue 3 July – September 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Minimization of Integration Testing Effort Between

Different Partner Teams Through Custom Tool

Development

Arnab Dey

E-mail: adtub@igmail.com

Abstract:

Integration testing between different partner teams is crucial for ensuring the seamless operation of complex

systems. However, the process often entails significant effort and coordination, leading to delays and resource-

intensive activities. In this paper, we propose a novel approach to minimize integration testing effort by developing

custom tools from scratch. These tools facilitate efficient communication, data exchange, and testing automation,

thereby streamlining the integration testing process and reducing dependency on manual interventions. Through

real-world examples and case studies, we demonstrate the effectiveness of our approach in improving collaboration,

accelerating testing cycles, and enhancing overall project efficiency.

Keywords: Integration testing, Custom tools, Collaboration, Automation, Efficiency

I. Introduction Integration testing is a

critical phase in the software development

lifecycle, particularly in complex projects

involving multiple partner teams. It involves

verifying the interactions between various

components, subsystems, or systems to

ensure that they function together as

intended. However, traditional integration

testing approaches often entail significant

effort and coordination, leading to delays,

inefficiencies, and increased risk of errors.

In this paper, we present an innovative

approach to minimize integration testing

effort by developing custom tools from

scratch. These tools are designed to address

specific challenges associated with

integration testing, such as communication

barriers, data exchange complexities, and

testing automation limitations. By leveraging

custom tools tailored to the project's needs,

organizations can streamline the integration

testing process, enhance collaboration

between partner teams, and achieve greater

efficiency and effectiveness in delivering

high-quality software products.

II. Challenges in Integration Testing

Integration testing between different partner

teams poses several challenges that can

impede the efficiency and effectiveness of

the testing process. Some of the key

challenges include:

1. Communication barriers: In distributed

development environments, communication

barriers between partner teams can hinder

effective collaboration and coordination

during integration testing.

2. Data exchange complexities: Integration

testing often involves the exchange of large

volumes of data between disparate systems,

http://jtipublishing.com/jti

Volume 2 Issue 3, July – September 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

leading to complexities in data mapping,

transformation, and validation.

3. Testing automation limitations: Manual

testing processes can be time-consuming,

error-prone, and resource-intensive,

particularly in environments where

automation tools are not readily available or

suitable for the project's requirements.

4. Dependency on external resources:

Integration testing may depend on external

resources, such as third-party systems or

services, which can introduce delays and

dependencies beyond the control of the

testing team.

III. Custom Tool Development Approach

To address the challenges associated with

integration testing, we propose a custom tool

development approach that focuses on the

following key principles:

1. Identify specific pain points: Conduct a

thorough analysis of the integration testing

process to identify specific pain points,

bottlenecks, and inefficiencies that can be

addressed through custom tool development.

2. Define tool requirements: Based on the

identified pain points, define clear

requirements and objectives for the custom

tools, ensuring alignment with the project's

goals, scope, and constraints.

3. Design tailored solutions: Develop custom

tools tailored to the project's needs,

leveraging appropriate technologies,

frameworks, and methodologies to address

the identified requirements effectively.

4. Foster collaboration and feedback:

Involve stakeholders from different partner

teams in the tool development process to

ensure that the tools meet their needs and

requirements. Encourage collaboration,

communication, and feedback throughout the

development lifecycle.

5. Test and iterate: Conduct rigorous testing

and validation of the custom tools to ensure

reliability, scalability, and usability. Iterate

on the tool design based on feedback from

stakeholders and lessons learned from real-

world usage.

IV. Case Study: Implementation of

Custom Integration Testing Tools To

illustrate the effectiveness of our custom tool

development approach, we present a case

study of its implementation in a large-scale

software development project involving

multiple partner teams. The project aimed to

integrate various subsystems and

components to deliver a comprehensive

software solution for a client in the financial

services industry.

Implementation: The custom MQ integration

tool was developed using agile

methodologies, with iterative feedback and

collaboration from stakeholders across the

partner teams. The tool was integrated

seamlessly into the existing testing

infrastructure, providing a user-friendly

interface and intuitive functionality for data

manipulation and testing automation.

Results and Benefits: The implementation of

the custom MQ integration tool yielded

significant benefits:

1. Improved Collaboration: The tool

facilitated seamless communication and

collaboration between partner teams,

enabling more efficient coordination and

information sharing during integration

testing.

2. Enhanced Automation: The tool automated

repetitive and manual testing tasks, reducing

http://jtipublishing.com/jti

Volume 2 Issue 3, July – September 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

the need for manual interventions and

accelerating testing cycles.

3. Streamlined Data Exchange: The tool

simplified data mapping, transformation, and

validation processes, reducing complexities

and errors associated with data exchange

between disparate systems.

4. Reduced Testing Effort: By minimizing

manual interventions, automating testing

tasks, and streamlining data exchange

processes, the tool significantly reduced the

overall effort and resources required for

integration testing.

V. Results and Benefits The implementation

of custom integration testing tools resulted in

several significant benefits, including:

1. Improved collaboration: The custom tools

facilitated seamless communication and

collaboration between partner teams,

enabling more efficient coordination and

information sharing during integration

testing.

2. Enhanced automation: The custom tools

automated repetitive and manual testing

tasks, reducing the need for manual

interventions and accelerating testing cycles.

3. Streamlined data exchange: The custom

tools simplified data mapping,

transformation, and validation processes,

reducing complexities and errors associated

with data exchange between disparate

systems.

4. Reduced testing effort: By minimizing

manual interventions, automating testing

tasks, and streamlining data exchange

processes, the custom tools significantly

reduced the overall effort and resources

required for integration testing.

VI. Conclusion In conclusion, custom tool

development offers a promising approach to

minimize integration testing effort between

different partner teams. By addressing

specific challenges associated with

integration testing, custom tools can

streamline communication, enhance

automation, and improve overall project

efficiency. Organizations that invest in

custom tool development stand to benefit

from improved collaboration, accelerated

testing cycles, and greater confidence in

delivering high-quality software products.

References:

1. G. R. Gomes and C. H. S. Rodrigues,

"Effective communication in distributed

software development teams: A systematic

literature review," Information and Software

Technology, vol. 89, pp. 101–127, 2017.

2. L. Bass, P. Clements, and R. Kazman,

Software Architecture in Practice, 3rd ed.

Addison-Wesley, 2012.

3. M. C. Paulk et al., "Capability Maturity

Model for Software (SW-CMM) Version

1.1," Software Engineering Institute,

Carnegie Mellon University, Pittsburgh, PA,

USA, Tech. Rep. CMU/SEI-93-TR-24, 1993.

4. R. S. Pressman, Software Engineering: A

Practitioner's Approach, 8th ed. McGraw-

Hill Education, 2015.

5. D. C. Schmidt, M. Stal, H. Rohnert, and F.

Buschmann, Pattern-Oriented Software

Architecture: Patterns for Concurrent and

Networked Objects, vol. 2. John Wiley &

Sons, 2000.

6. IEEE Editorial Style Manual. (2022).

[Online]. Available:

https://www.ieee.org/content/dam/ieee-

http://jtipublishing.com/jti

Volume 2 Issue 3, July – September 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

org/ieee/web/org/conferences/style_referenc

es_manual.pdf

7. J. M. Juran and A. B. Godfrey, Juran's

Quality Handbook, 6th ed. McGraw-Hill

Education, 2010.

8. P. C. Clements, D. M. Northrop, and P. A.

V. Cate, "Software Product Lines: Practices

and Patterns," Software Engineering

Institute, Carnegie Mellon University,

Pittsburgh, PA, USA, Tech. Rep. CMU/SEI-

2001-TR-008, 2001.

9. M. Fowler, Patterns of Enterprise

Application Architecture, 1st ed. Addison-

Wesley, 2002.

10. M. Shaw and D. Garlan, Software

Architecture: Perspectives on an Emerging

Discipline, 1st ed. Prentice Hall, 1996.

http://jtipublishing.com/jti

