

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal http://jtipublishing.com/jti

Cost-Optimizing Infrastructure Platform with

Dynamic Code Execution

Naveen Koka na.koka@outlook.com

Abstract:

A comprehensive system has been established comprising a manager and executor running on a default small instance.

The system supports various types of invocations, such as REST API and database updates, each delegating responsibility

to the executor. The manager's interface allows the definition of API attributes, including endpoint, HTTP method type,

authentication methods (basic, OAuth, username, password), script editor, and the name of dynamic scripts. The code

execution environment prioritizes efficiency by default, running 10 threads concurrently on a single small instance.

Upon invocation, system logs are meticulously generated, capturing essential information for error identification and

analysis. Additionally, script logs containing relevant data from the code are extracted, saved, and made accessible to

users. The system maintains these script logs for a duration of 10 days, facilitating historical analysis.

To optimize resource allocation, the system dynamically manages the instantiation of new instances based on thread

utilization. Specifically, if the number of concurrent thread calls surpasses a predefined threshold and there are a

significant number of pending requests, a new machine is spawned to handle the additional workload.

Furthermore, version control is integrated seamlessly using GitHub, offering inherent versioning advantages. The code

files bear the .gvy extension, while metadata files utilize the .md extension. The manager is equipped to validate scripts,

providing compilation errors in a user-friendly displayable format.

In terms of data persistence, the system database stores essential information about APIs and scripts, including global

variables identified by {!}. The manager defaults to applying linting and executing csfixer to address any potential code

smells. Additionally, the UI allows users to configure various attributes, fostering a user-friendly environment for script

definition and customization.

Overall, this abstract encapsulates a versatile and efficient code execution system with robust logging, version control,

and resource management capabilities.

Keywords: Dynamic code execution, literals, infrastructure optimization,

Runtime code execution, Parsing code

Volume 2 Issue 3, July- September 2021

Journal of Technological Innovations

Est. 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal http://jtipublishing.com/jti

1. Introduction

In this integrated code execution system, a manager

and executor work cohesively to handle diverse

invocation types, offering a user-friendly interface for

configuring API attributes and global variables.

Prioritizing efficiency, the system operates on a default

small instance, dynamically managing resources by

spawning new instances when necessary. 2.

Problem Statement

The widespread availability of cloud services has

empowered developers to leverage instances and app

services effortlessly. However, this convenience has

led to a prevalent practice of keeping instances

continuously active, incurring unnecessary costs.

Developers often overlook the economic implications

of maintaining machines in an active state, resulting in

increased expenditure on cloud resources. Therefore,

there is a growing need for awareness and optimization

strategies to ensure judicious utilization of cloud

services and cost-effective code execution practices.

In the absence of comprehensive documentation,

organizations often prioritize spending on cloud

services, if these services fulfill their intended

purposes. The willingness to invest without thorough

documentation highlights the perceived value and

necessity of the cloud resources in meeting

organizational goals. However, emphasizing the

importance of documentation can lead to more

informed decision-making and efficient resource

allocation, ultimately contributing to cost-effective and

streamlined operations.

Over time, this approach can turn into a nightmare,

leading to a significant escalation in costs that may far

exceed the revenue being generated. The lack of

strategic resource management and documentation can

result in financial challenges, prompting organizations

to reassess their cloud spending practices maintaining

a sustainable balance between costs and revenue.

3. Solution

We will be creating a light weight engine which will be

used to fetch and execute the code in runtime. This way

a small instance can be used to execute multiple

services at one go.

This also provides the developers to concentrate

on writing the code rather than infrastructure.

Fig 1: Infrastructure Optimization

Several factors contribute to the realization of

infrastructure optimization, and we will delve into

each of them in detail.

The Dynamic Code

The code integrated into the executor has a

specific function, solely designed to receive data,

make modifications, and then return the modified

data to the invoker.

The code is authored in Groovy, yet the approach

is not confined to a specific language; we can

employ anydynamically executable code. To this

paper, Groovy will serve as the reference dynamic

code base.

While crafting dynamic code, several default

libraries are available for reference. Examples

include groovy.lang, groovy.util, groovy.json,

groovy.sql, groovy.transform, among others.

Groovy boasts a comprehensive collection of

seamlessly integrated libraries, enhancing its

versatility.

During the initial implementation, we will

reference methods from the same class.

The Executor

The executor serves as the core engine responsible

for interpreting and executing the code within the

execution process. It initiates threads, transfers the

necessary data and code for execution, and

ultimately returns the resulting data.

The code must be pulled from the cache, if it's not

available then check with Dynamic code by

passing the system record id from the system

database.

The executor is crafted in Java to seamlessly integrate

with Groovy scripts, benefiting from the compatibility

between Groovy and Java. These concepts can also be

Volume 2 Issue 3, July- September 2021

Volume 2 Issue 4, October- December 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

applied and implemented with any other language

integrated with dynamic code capabilities.

The executor functions as a continuously running

entity, monitoring and handling incoming requests. It

receives requests, extracts the dynamic code specified

in the request, and then executes the script using the

built-in GroovyShell.

The script is to be executed within the thread by

providing both the script and the script context.

Upon initiating the thread, the executor will log

pertinent details about the thread, including

information about the incoming request, the executed

script, and the resulting response. This approach allows

for comprehensive storage of information related to

each request and its corresponding script execution.

In addition to the previously mentioned details,

supplementary information such as the time taken to

complete the script, any generated warnings, and the

frequency of script usage will also be stored. This

comprehensive approach ensures a thorough record of

various aspects related to script execution for further

analysis and optimization.

The Thread

The thread is the operational space where dynamic

code is executed, and tasks are performed. Upon

initiating the thread, a small scheduler component is

activated to monitor and track its progress.

The guiding principle is that no code should run for

more than 60 seconds in a typical transactional system.

In instances where code execution exceeds this

designated duration, the following steps will be taken.

Each thread is allotted a time limit of 60 seconds for

code completion. If there is a need to extend this limit

beyond 60 seconds, a new machine is dynamically

spawned to execute the code exclusively, without

impacting other threads.

Careful consideration of this configuration is essential,

as it plays a critical role in minimizing additional costs.

Establishing rules around this configuration is prudent,

and approval from designated personnel responsible

for managing these aspects can be implemented as an

additional layer of oversight.

The code parser

If the code operates within the database context, it can

create, select, or update the data in the database. To

mitigate security-related concerns, the dynamic code

will be tasked with translating the OData query

language into the corresponding SQL query.

We will parse the file, extract all querys, and replace

them with the actual SQL queries. The queries to be

identified will be enclosed within {!}. The data will be

parsed and returned as a list of JSON data.

To insert the data, Create an object and convert it into

a list. To recognize the code, it will be enclosed within

{!}, containing two parameters: the variable data and

the table name. Using this information, generate the

insert command for inserting into the code.

Additionally, we can generate predefined values and

utilize them as literals, such as "today," "yesterday,"

and other date-related operations, etc.

All database operations will be performed in

transaction mode to prevent any partial data commits.

These transaction statements also need to be included

as part of the source code.

We intend to cache this information since parsing the

file incurs a significant cost. If there are modifications

to the file or it is no longer frequently used, it will be

unloaded, while others will remain cached.

The code versioning

The code will be stored on GitHub, with the significant

advantage of inherent versioning. Only The Manager

has the authority to manage this repository, and the

source of edits will exclusively originate from The

Manager. To commit and pull the code, interactions

with the GitHub APIs are necessary.

Whenever code is committed directly to the main

branch, the metadata file must be internally managed,

including the recording of the username for the

commit.

Volume 2 Issue 4, October- December 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal http://jtipublishing.com/jti

Administrators must ensure to prevent rate limit errors,

and one way to achieve this is by submitting requests

to increase the limit.

Proper authentication implementation is essential to

prevent any Not Found errors.

Certain errors need to be interpreted to present the user

with the appropriate messages. Here are some

examples:

Code Out Of Date:

If a user is editing the code concurrently with another

user, and user1 has already committed the code, when

user2 attempts to commit, a message indicating that the

code is out of date should be conveyed. GitHub

inherently provides this functionality, and we need to

present it to the user in a clear and organized manner.

File Exists:

Avoid duplicating files with the same name if they

already exist in the repository.

The Manager

This UI is employed to define the executor and can be

customized for invocation in various forms. The

manager is responsible for offering a UI to configure

the script. The script needs to incorporate a method

named "run" that takes a JSON as its parameter,

representing the script's body. Certain

metadata, such as file name, created user, and last

modified user, is stored as a JSON in a file associated

with the code.

· The code file is assigned the extension .gvy.

· The metadata files are given the extension .md.

The manager is responsible for validating the script

and returning any compilation errors in a displayable

structure.

The manager is required to automatically apply linting

and identify and rectify any potential code smells.

Upon meeting all the specified rules, we can proceed

to submit the new or modified code to Git for storage.

In the event of any errors returned by Git, it is crucial

to interpret them gracefully and present the

information to the user in a clear and understandable

manner.

The metadata file is stored within the document and

subsequently submitted to Git. The manager bears the

responsibility of maintaining the authenticity of the

file, and this information is not disclosed to the user.

The manager possesses a database to store information

regarding the API and files to be executed. Global

variables, identifiable by {!}, are defined for use in API

executions. The UI allows for the specification of the

following attributes: · API endpoint

· HTTP Method Type

· Authentication (supports basic, OAuth, username,

and password)

· Script Editor

· Name of the Dynamic Script

3.7 The Invoker Types

The invoker can trigger multiple types and delegate the

responsibility to the executor:

1. Rest API:

· Define the REST API and host it internally.

2. DB updates:

· Invoked when any record is inserted or updated. This

is also exposed through an API but is primarily driven

by changes in the database tables.

Volume 2 Issue 4, October- December 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal http://jtipublishing.com/jti

The Infrastructure Optimization

A default small instance is continuously running the

manager and executor. When the code is invoked by

one of the types, a thread becomes available to handle

the request without requiring additional infrastructure.

By default, 10 threads are concurrently running on one

small instance. If the number of concurrent thread calls

exceeds 5 and there are 15 or more pending requests, a

new machine will be spawned to execute the new set

of requests.

The Metrics

At regular intervals, such as every month, we can

furnish metrics illustrating the amount saved on

infrastructure costs. This reporting mechanism will

offer insights into the efficiency gains and cost

reductions achieved through optimized infrastructure

utilization.

The metrics encompass additional details stored within

the thread executor. Tracking can be performed based

on the number of lines executed, providing a granular

measure of script performance and resource utilization.

The metrics encompass additional details stored within

the thread executor. Tracking can be performed based

on the number of lines executed, providing a granular

measure of script performance and resource utilization.

Additionally, we can improve the system to capture

details regarding code execution and other relevant

information to enrich the metrics.

The Logs

System Logs:

All logs generated during a transaction will be saved.

This aids in identifying any encountered errors.

Script Logs:

Logs created within the code will be extracted, saved,

and presented to the user. This historical log data will

be stored for the past 10 days.

The manager should feature a visual representation to

display log data, offering enhanced insights for both

administrators and users regarding the ongoing

execution. This not only provides a modern touch but

also facilitates a step-by-step understanding of the

execution process.

4. Technical Considerations

Management Component

UI, web server, and backend code for visual

interaction.

Utilizes React for the frontend.

Web server options include Tomcat or Node.js.

Backend implemented in Java.

Executor Component

Implemented in Java and exposed as a REST API.

Database

Utilizes PostgreSQL to store all configurations. Utilize

the same database for the logs storage

Document Storage

GitHub serves as the document storage system.

5. Uses

Utilizing infrastructure optimization through the

execution of dynamic code offers several benefits:

Cost Efficiency

Maximizes resource utilization,

 minimizing unnecessary costs associated with idle or

underutilized infrastructure.

Performance Enhancement

Optimizes the execution environment, leading to

improved performance and reduced execution times

for code.

Scalability

Enables dynamic scaling by spawning new instances

based on demand, ensuring efficient resource

Volume 2 Issue 4, October- December 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal http://jtipublishing.com/jti

allocation during peak workloads. Version Control

Integration

Integrates seamlessly with version control systems like

GitHub, providing versioning benefits and enhancing

code management practices.

Cost Tracking and Analysis

Allows organizations to track and analyze costs

associated with infrastructure usage, facilitating

informed decision-making and resource allocation.

Flexibility and Adaptability

Facilitates easy adaptation to changing workloads and

requirements, ensuring the infrastructure aligns with

the dynamic nature of development and operations.

Resource Monitoring

The system is engineered to furnish organizations with

versatile infrastructure management and code

execution, ensuring comparable performance with

reduced costs.

6. Use Cases

Banking Sector

By using the infrastructure there is a direct benefit of

the cost savings as well as the security can be

implemented to make sure the dynamic code can be

used.

Electronic Manufacturers

There are so many tools needed to quickly develop and

deploy with in no time. This concept can be used and

develop and deploy in no time.

7. Conclusion

In conclusion, failing to proactively manage our

infrastructure can result in escalating costs. To address

this, we need a system that dynamically regulates

infrastructure usage, optimizing resources to deliver

desired services efficiently. This system introduces a

distinctive approach to code management and

execution, reducing dependency on exhaustive

documentation for every piece of code.

8. References

[1] Vlad Nevzorov. (2011). How much does it cost to

develop a line of code?.

https://vladnevzorov.wordpress.com/2011/01/31/how

-much-does-it-cost-to-develop-a-line-of-code-sloc/

[2] shepelev. 2021. Why Git Is A Great Documentation

Management Tool.

https://hackernoon.com/why-git-is-a-

greatdocumentation-management-tool-p712339s

[3] Xianglong Huang, Brian T Lewis, Kathryn S

McKinley. 2006. Dynamic code management:

improving whole program code locality in

managed runtimes.

https://dl.acm.org/doi/abs/10.1145/1134760.11347

79.

[4] HERB KRASNER. (2021). The Cost of Poor

Software Quality in the US: A 2020 Report.

https://www.it-cisq.org/cisq-files/pdf/CPSQ-

2020report.pdf.

[5] Sarah Wang, Martin Casado. (2021). The Cost of

Cloud, a Trillion Dollar Paradox.

https://a16z.com/the-cost-of-cloud-a-trillion-

dollarparadox/

[6] Jorge Manrubia (2009). Evaluating code

dynamically in Groovy (differences with Ruby).

https://www.jorgemanrubia.com/2009/10/10/evalu

ati ng-code-dynamically-in-groovy/

[7] Cheney Shue (2015). Execute Groovy

dynamically.

https://forums.oracle.com/ords/apexds/post/execut

egroovy-dynamically-3067

