
Journal of Technological Innovations

Est. 2020

Volume 2 Issue 1, January-March 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Implementing Security by Design practice with

DevSecOps Shift Left Approach

Kiran Kumar Voruganti

E-mail: vorugantikirankumar@gmail.com

Abstract:

This research paper explores the integration of security practices into the DevOps process, known as DevSecOps,

focusing on implementing security by design principles. It investigates the challenges organizations face in ensuring

the security of their software applications and examines the benefits of adopting a DevSecOps approach. The paper

provides guidance on implementing security by design practices within the DevSecOps pipeline, presenting a

comprehensive framework and recommending tools for planning, development, testing, and deployment phases.

Keywords: DevSecOps, Security by Design, Shift Left Strategy, Cybersecurity, Software Development Lifecycle

(SDLC), Automated Security Testing, Secure Coding Practices, Infrastructure as Code (IaC), Vulnerability

Assessment, Compliance Validation, Static Code Analysis, Dynamic Application Security Testing (DAST),

Container Security, Threat Modeling, Continuous Integration/Continuous Deployment (CI/CD), Identity and Access

Management (IAM), Logging and Monitoring, Security Automation and Orchestration

Introduction:

Security has become a paramount concern in software

development due to the increasing frequency and

sophistication of cyber threats. Traditional security

approaches often result in reactive measures, leaving

applications vulnerable to attacks. DevSecOps

emerges as a proactive solution, integrating security

into the DevOps pipeline from the outset of

development. This paper aims to explore the principles

of security by design within the context of DevSecOps

and provide practical guidance for its implementation.

1. Shift Left Strategy

By shifting security practices left, organizations aim to

address security concerns as early as possible, ideally

during the design and development phases. This

proactive approach helps identify and mitigate

security risks before they escalate, resulting in more

secure and resilient software deployments.

Key components of the DevSecOps pipeline include

static code analysis, dynamic application security

testing (DAST), container security scanning,

vulnerability assessment, compliance validation, and

security monitoring. These components work together

to identify, remediate, and prevent security

vulnerabilities and compliance violations throughout

the software delivery process.

2. Literature Review:

Existing literature on DevSecOps highlights its

significance in addressing security challenges in

software development. Studies emphasize the need for

a shift-left approach, where security is integrated early

in the development lifecycle. Standards and

frameworks such as ISO/IEC 27001 and IEEE Std

2444-2019 provide guidelines for implementing

security controls and best practices.

3. Problem Statement:

Organizations face significant challenges in ensuring

the security of their software applications. Traditional

approaches to security often involve bolt-on measures

implemented after development, leading to

http://jtipublishing.com/jti

Volume 2 Issue 1, January-March 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

vulnerabilities and compliance issues. There is a need

for a more proactive and integrated approach to

security throughout the software development

lifecycle.

4. Research Methodology:

This study employs a mixed-methods approach,

combining qualitative and quantitative data collection

methods. Interviews with industry experts and case

studies of organizations implementing DevSecOps are

conducted to gather insights into security integration

practices and their effectiveness.

5. Framework for Security Integration:

A comprehensive framework is presented for

incorporating security by design practices into the

DevSecOps pipeline. Design considerations,

implementation best practices, and recommended

tools are provided for each phase of the lifecycle,

ensuring a proactive and integrated approach to

security.

1. Planning Phase:

Design Considerations:

• Identify and prioritize security requirements based on

the sensitivity of the application, regulatory

compliance requirements, and potential threats.

• Perform a threat modeling exercise to identify

potential security vulnerabilities and attack vectors.

Suggested Tools:

• Jira: For managing security-related user stories,

tasks, and requirements.

• Microsoft Threat Modeling Tool: For creating threat

models and analyzing potential security threats.

Best Practices:

• Involve security experts and stakeholders early in the

planning phase to ensure that security requirements are

adequately addressed.

• Document security requirements and threat models

to serve as a reference throughout the development

process.

• Conduct regular security reviews and risk

assessments to identify and mitigate security risks

proactively.

2. Development Phase:

Design Considerations:

• Adhere to secure coding practices such as input

validation, output encoding, and proper error handling

to prevent common vulnerabilities like injection

attacks and cross-site scripting (XSS).

• Use secure development frameworks and libraries

that have undergone rigorous security testing and have

a track record of addressing known vulnerabilities.

Suggested Tools:

• SonarQube: For performing static code analysis to

identify potential security vulnerabilities and code

smells.

• Checkmarx: For static application security testing

(SAST) to identify security vulnerabilities in source

code.

Best Practices:

• Implement security controls at the code level, such

as input validation, output encoding, and

parameterized queries, to prevent common security

vulnerabilities.

• Regularly review and refactor code to address

security issues identified by static code analysis tools.

• Conduct peer code reviews with a focus on security

to identify potential vulnerabilities and share best

practices among team members.

3. Testing Phase:

Design Considerations:

• Conduct comprehensive security testing to identify

and address security vulnerabilities at different levels

of the application stack, including the application

layer, network layer, and data layer.

http://jtipublishing.com/jti

Volume 2 Issue 1, January-March 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

• Use a combination of static, dynamic, and interactive

application security testing (SAST, DAST, IAST) to

cover a wide range of security vulnerabilities.

Suggested Tools:

• OWASP ZAP (Zed Attack Proxy): For dynamic

application security testing (DAST) to identify

common security vulnerabilities such as injection,

broken authentication, and insecure direct object

references.

• Burp Suite: For web application security testing,

including scanning for vulnerabilities, exploiting

security flaws, and generating reports.

Best Practices:

• Automate security testing as part of the continuous

integration/continuous deployment (CI/CD) pipeline

to detect and remediate security vulnerabilities early in

the development lifecycle.

• Conduct regular penetration testing and vulnerability

scanning to identify security weaknesses and prioritize

remediation efforts based on risk severity.

• Implement security regression testing to ensure that

security controls remain effective as code changes are

introduced.

4. Deployment Phase:

Design Considerations:

• Implement infrastructure as code (IaC) to define and

provision infrastructure resources using code,

enabling version control, repeatability, and

consistency.

• Enforce least privilege access controls to restrict

access to production environments and sensitive data

based on the principle of granting only the minimum

level of access necessary to perform a task.

Suggested Tools:

• Terraform: For defining and managing infrastructure

as code (IaC) across multiple cloud providers and on-

premises environments.

• AWS Identity and Access Management (IAM): For

managing user access and permissions to AWS

services and resources.

Best Practices:

• Automate deployment pipelines using tools like

Jenkins, GitLab CI/CD, or AWS CodePipeline to

ensure consistent and repeatable deployments.

• Implement automated security controls, such as

infrastructure scanning and configuration validation,

as part of the deployment process to identify and

remediate security issues before deploying to

production.

• Conduct regular security audits and compliance

checks to ensure that infrastructure configurations

adhere to security best practices and regulatory

requirements.

6. Case Studies and Practical Examples:

Use Case One:

Challenge: A leading tech solutions company was

grappling with escalating security threats and stringent

compliance requirements within their software

development process. The traditional reactive security

measures they employed caused delays in deployment

and exposed vulnerabilities in their applications.

Strategy: To address these challenges, the company

embraced the principles of DevSecOps to integrate

security practices into their development lifecycle

from the start. They incorporated automated security

testing tools into their continuous integration and

continuous deployment (CI/CD) pipeline and

emphasized secure coding practices through developer

training.

Outcome: By weaving security into their DevOps

workflow, the tech solutions company significantly

reduced the time spent on manual

security reviews and was able to identify

vulnerabilities much earlier in the development cycle.

This strategic shift not only expedited their time-to-

market but also ensured a high level of security and

compliance, enhancing the overall resilience and

reliability of their software solutions.

Use Case Two

http://jtipublishing.com/jti

Volume 2 Issue 1, January-March 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Challenge: A prominent financial institution faced

significant challenges in protecting their banking

applications from cyber threats and ensuring

adherence to strict regulatory compliance standards.

Strategy: In response to these challenges, the

institution embraced a DevSecOps methodology to

embed automated security checks within their

software development lifecycle. They leveraged

Infrastructure as Code (IaC) and adopted security-

optimized templates for provisioning cloud resources

in a secure manner. The strategy was complemented

by the implementation of stringent access controls and

robust encryption protocols.

Outcome: The adoption of a DevSecOps framework

enabled the financial institution to significantly

enhance its security posture, effectively mitigating the

risk of security breaches. This strategic shift not only

ensured compliance with regulatory demands more

efficiently but also equipped the institution with the

agility to promptly address and neutralize emerging

security threats through continuous monitoring and

iterative updates to their security measures.

7 Key aspects of the Shift Left Strategy

Key aspects of the shift left strategy:

1. Early Identification of Security Risks

2. Automated Security Testing

3. Secure Coding Practices

4. Collaboration and Communication

5. Continuous Monitoring and Feedback

8. DevSecOps Security Controls

DevSecOps security controls encompass a range of

measures implemented throughout the software

development lifecycle to ensure the security of

applications. These controls help organizations detect

and mitigate security vulnerabilities early in the

development process, integrate security seamlessly

into DevOps workflows, and maintain compliance

with security standards and regulations. Here are some

key DevSecOps security controls:

a. Automated Vulnerability Scanning: Integrate

automated vulnerability scanning tools into the CI/CD

pipeline to identify security vulnerabilities in code,

dependencies, and configurations. Tools such as Snyk,

WhiteSource, and OWASP Dependency-Check can be

used to scan for known vulnerabilities in libraries and

dependencies.

b. Static Application Security Testing (SAST):

Conduct static code analysis to identify security flaws

and weaknesses in the application codebase. SAST

tools analyze source code or compiled binaries without

executing the application. Examples include

SonarQube, Checkmarx, and Fortify.

c. Dynamic Application Security Testing (DAST):

Perform dynamic security testing by simulating real-

world attack scenarios against running applications.

DAST tools interact with the application like an

external attacker to identify vulnerabilities such as

injection flaws, broken authentication, and insecure

direct object references. Popular DAST tools include

OWASP ZAP, Burp Suite, and Acunetix.

d. Interactive Application Security Testing (IAST):

Implement IAST tools to assess applications in real-

time during testing or runtime. IAST tools instrument

the application to monitor its behavior and identify

security vulnerabilities as they occur. Examples

include Contrast Security, Veracode, and Synopsys.

e. Container Security: Secure containerized

applications by implementing container-specific

security controls. This

includes scanning container images for vulnerabilities,

enforcing secure configurations, and monitoring

container runtime behavior. Tools like Docker

Security Scanning, Anchore, and Aqua Security

specialize in container security.

f. Infrastructure as Code (IaC) Security: Apply

security controls to infrastructure code to prevent

misconfigurations and security weaknesses in cloud

environments. Utilize tools such as Terraform, AWS

Config, and Azure Security Center to enforce security

policies, monitor compliance, and detect unauthorized

changes to infrastructure configurations.

g. Secret Management: Securely manage and store

sensitive information such as API keys, passwords,

and cryptographic keys. Leverage secret management

solutions like HashiCorp Vault, AWS Secrets

Manager, and Azure Key Vault to centralize secrets,

http://jtipublishing.com/jti

Volume 2 Issue 1, January-March 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

enforce access controls, and rotate credentials

regularly.

h. Identity and Access Management (IAM):

Implement IAM best practices to control access to

resources and services based on the principle of least

privilege. Use identity federation, multi-factor

authentication (MFA), and role-based access control

(RBAC) to enforce granular access controls and

minimize the risk of unauthorized access.

i. Logging and Monitoring: Establish comprehensive

logging and monitoring capabilities to detect and

respond to security incidents in real-time. Centralize

logs from applications, infrastructure, and security

tools, and use SIEM (Security Information and Event

Management) solutions like Splunk, ELK Stack, and

Azure Sentinel for analysis and correlation of security

events.

j. Security Automation and Orchestration: Automate

security workflows and orchestrate security processes

to streamline incident response and remediation.

Implement security automation frameworks like

SOAR (Security Orchestration, Automation, and

Response) platforms to automate repetitive tasks,

coordinate incident response activities, and enforce

security policies across the organization.

9. Conclusion:

In conclusion, implementing security by design

practice with DevSecOps is essential for organizations

to mitigate security risks and ensure the integrity of

their software applications. By integrating security

into every stage of the development lifecycle and

leveraging automation tools, organizations can

achieve a proactive and sustainable approach to

security.

References:

[1] ISO/IEC 27001:2013, Information Security

Management Systems - Requirements, International

Organization for Standardization, Geneva,

Switzerland, 2013.

[2] IEEE Std 2444-2019, IEEE Standard for Software

Maintenance, Institute of Electrical and Electronics

Engineers, 2019.

[3] DevSecOps, Speed with Security: Setting up new

global teams, Infosys, 2019

[4] G. Kim, J Humble, P Debois, J Willis, The DevOps

Handbook: How to Create World-Class Agility,

Reliability, & Security in Technology Organizations,

2017

http://jtipublishing.com/jti

