
 Issue 1, January-
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal http://jtipublishing.com/jti

Implementing Security by Design practice with

DevSecOps Shift Left Approach

Kiran Kumar Voruganti

E-mail: vorugantikirankumar@gmail.com

Abstract:

This research paper explores the integration of security practices into the DevOps process, known as DevSecOps,

focusing on implementing security by design principles. It investigates the challenges organizations face in ensuring the

security of their software applications and examines the benefits of adopting a DevSecOps approach. The paper provides

guidance on implementing security by design practices within the DevSecOps pipeline, presenting a comprehensive

framework and recommending tools for planning, development, testing, and deployment phases.

Keywords: DevSecOps, Security by Design, Shift Left Strategy, Cybersecurity, Software Development Lifecycle

(SDLC), Automated Security Testing, Secure Coding Practices, Infrastructure as Code (IaC), Vulnerability

Assessment, Compliance Validation, Static Code Analysis, Dynamic Application Security Testing (DAST),

Container Security, Threat Modeling, Continuous Integration/Continuous Deployment (CI/CD), Identity and Access

Management (IAM), Logging and Monitoring, Security Automation and Orchestration

Introduction:

Security has become a paramount concern in software

development due to the increasing frequency and

sophistication of cyber threats. Traditional security

approaches often result in reactive measures, leaving

applications vulnerable to attacks.

 DevSecOps emerges as a proactive solution,

integrating security into the DevOps pipeline from the

outset of development. This paper aims to explore the

principles of security by design within the context of

DevSecOps and provide practical guidance for its

implementation.

1. Shift Left Strategy

By shifting security practices left, organizations aim to

address security concerns as early as possible, ideally

during the design and development phases. This

proactive approach helps identify and mitigate

security risks before they escalate, resulting in more

secure and resilient software deployments.

Key components of the DevSecOps pipeline include static

code analysis, dynamic application security

testing (DAST), container security scanning,

vulnerability assessment, compliance validation, and

security monitoring. These components work together

to identify, remediate, and prevent security

vulnerabilities and compliance violations throughout

the software delivery process.

2. Literature Review:

Existing literature on DevSecOps highlights its

significance in addressing security challenges in

software development. Studies emphasize the need for

a shift-left approach, where security is integrated early

in the development lifecycle. Standards and

frameworks such as ISO/IEC 27001 and IEEE Std

2444-2019 provide guidelines for implementing

security controls and best practices.

3. Problem Statement:

Organizations face significant challenges in ensuring

the security of their software applications. Traditional

approaches to security often involve bolt-on measures

implemented after development, leading to

Volume 2 March 2021

Journal of Technological Innovations

Est. 2020

Volume 2 Issue 1, January-March 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal http://jtipublishing.com/jti

vulnerabilities and compliance issues. There is a need

for a more proactive and integrated approach to

security throughout the software development

lifecycle.

4. Research Methodology:

This study employs a mixed-methods approach,

combining qualitative and quantitative data collection

methods. Interviews with industry experts and case

studies of organizations implementing DevSecOps are

conducted to gather insights into security integration

practices and their effectiveness.

5. Framework for Security Integration:

A comprehensive framework is presented for

incorporating security by design practices into the

DevSecOps pipeline. Design considerations,

implementation best practices, and recommended tools

are provided for each phase of the lifecycle, ensuring a

proactive and integrated approach to security.

1. Planning Phase:

Design Considerations:

• Identify and prioritize security requirements

based on the sensitivity of the

 application, regulatory compliance

requirements, and potential threats.

• Perform a threat modeling exercise to identify

potential security vulnerabilities and attack vectors.

Suggested Tools:

• Jira: For managing security-related user

stories, tasks, and requirements.

• Microsoft Threat Modeling Tool: For creating

threat models and analyzing potential security threats.

Best Practices:

• Involve security experts and stakeholders

early in the planning phase to ensure that security

requirements are adequately addressed.

• Document security requirements and threat

models to serve as a reference throughout the

development process.

• Conduct regular security reviews and risk

assessments to identify and mitigate security risks

proactively.

2. Development Phase: Design

Considerations:

• Adhere to secure coding practices such as

input validation, output encoding, and proper error

handling to prevent common vulnerabilities like

injection attacks and cross-site scripting (XSS).

• Use secure development frameworks and

libraries that have undergone rigorous security testing

and have a track record of addressing known

vulnerabilities.

Suggested Tools:

• SonarQube: For performing static code

analysis to identify potential security vulnerabilities

and code smells.

• Checkmarx: For static application security

testing (SAST) to identify security vulnerabilities in

source code.

Best Practices:

• Implement security controls at the code level,

such as input validation, output encoding, and

parameterized queries, to prevent common security

vulnerabilities.

• Regularly review and refactor code to address

security issues identified by static code analysis tools.

• Conduct peer code reviews with a focus on

security to identify potential vulnerabilities and share

best practices among team members.

3. Testing Phase:

Design Considerations:

• Conduct comprehensive security testing to

identify and address security vulnerabilities at

different levels of the application stack, including the

application layer, network layer, and data layer.

• Use a combination of static, dynamic, and

interactive application security testing (SAST, DAST,

IAST) to cover a wide range of security vulnerabilities.

Suggested Tools:

• OWASP ZAP (Zed Attack Proxy): For

dynamic application security testing (DAST) to

identify common security vulnerabilities such as

Volume 2 Issue 1, January-March 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

injection, broken authentication, and insecure direct

object references.

• Burp Suite: For web application security

testing, including scanning for vulnerabilities,

exploiting security flaws, and generating reports.

Best Practices:

• Automate security testing as part of the

continuous integration/continuous deployment

(CI/CD) pipeline to detect and remediate security

vulnerabilities early in the development lifecycle.

• Conduct regular penetration testing and

vulnerability scanning to identify security weaknesses

and prioritize remediation efforts based on risk

severity.

• Implement security regression testing to

ensure that security controls remain effective as code

changes are introduced.

4. Deployment Phase:

Design Considerations:

• Implement infrastructure as code (IaC) to

define and provision infrastructure resources using

code, enabling version control, repeatability, and

consistency.

• Enforce least privilege access controls to

restrict access to production environments and

sensitive data based on the principle of granting only

the minimum level of access necessary to perform a

task.

Suggested Tools:

• Terraform: For defining and managing

infrastructure as code (IaC) across multiple cloud

providers and onpremises environments.

• AWS Identity and Access Management

(IAM): For managing user access and permissions to

AWS services and resources.

Best Practices:

• Automate deployment pipelines using tools

like Jenkins, GitLab CI/CD, or AWS CodePipeline to

ensure consistent and repeatable deployments.

• Implement automated security controls, such

as infrastructure scanning and configuration

validation, as part of the deployment process to

identify and remediate security issues before

deploying to production.

• Conduct regular security audits and

compliance checks to ensure that infrastructure

configurations adhere to security best practices and

regulatory requirements.

6. Case Studies and Practical Examples:

Use Case One:

Challenge: A leading tech solutions company was

grappling with escalating security threats and stringent

compliance requirements within their software

development process. The traditional reactive security

measures they employed caused delays in deployment

and exposed vulnerabilities in their applications.

Strategy: To address these challenges, the company

embraced the principles of DevSecOps to integrate

security practices into their development lifecycle

from the start. They incorporated automated security

testing tools into their continuous integration and

continuous deployment (CI/CD) pipeline and

emphasized secure coding practices through developer

training.

Outcome: By weaving security into their DevOps

workflow, the tech solutions company significantly

reduced the time spent on manual

security reviews and was able to

 identify vulnerabilities much earlier in the

development cycle. This strategic shift not only

expedited their time-tomarket but also ensured a high

level of security and compliance, enhancing the

overall resilience and reliability of their software

solutions.

Volume 2 Issue 1, January-March 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Use Case Two

Challenge: A prominent financial institution faced

significant challenges in protecting their banking

applications from cyber threats and ensuring adherence

to strict regulatory compliance standards.

Strategy: In response to these challenges, the

institution embraced a DevSecOps methodology to

embed automated security checks within their software

development lifecycle. They leveraged Infrastructure

as Code (IaC) and adopted securityoptimized

templates for provisioning cloud resources in a secure

manner. The strategy was complemented by the

implementation of stringent access controls and robust

encryption protocols.

Outcome: The adoption of a DevSecOps framework

enabled the financial institution to significantly

enhance its security posture, effectively mitigating the

risk of security breaches. This strategic shift not only

ensured compliance with regulatory demands more

efficiently but also equipped the institution with the

agility to promptly address and neutralize emerging

security threats through continuous monitoring and

iterative updates to their security measures. 7 Key

aspects of the Shift Left Strategy

Key aspects of the shift left strategy:

1. Early Identification of Security Risks

2. Automated Security Testing

3. Secure Coding Practices

4. Collaboration and Communication

5. Continuous Monitoring and Feedback

8. DevSecOps Security Controls

DevSecOps security controls encompass a range of

measures implemented throughout the software

development lifecycle to ensure the security of

applications. These controls help organizations detect

and mitigate security vulnerabilities early in the

development process, integrate security seamlessly

into DevOps workflows, and maintain compliance

with security standards and regulations. Here are some

key DevSecOps security controls:

a. Automated Vulnerability Scanning: Integrate

automated vulnerability scanning tools into the CI/CD

pipeline to identify security vulnerabilities in code,

dependencies, and configurations. Tools such as Snyk,

WhiteSource, and OWASP Dependency-Check can be

used to scan for known vulnerabilities in libraries and

dependencies.

b. Static Application Security Testing (SAST):

Conduct static code analysis to identify security flaws

and weaknesses in the application codebase. SAST

tools analyze source code or compiled binaries without

executing the application. Examples include

SonarQube, Checkmarx, and Fortify.

c. Dynamic Application Security Testing

(DAST): Perform dynamic security testing by

simulating realworld attack scenarios against running

applications. DAST tools interact with the application

like an external attacker to identify vulnerabilities such

as injection flaws, broken authentication, and insecure

direct object references. Popular DAST tools include

OWASP ZAP, Burp Suite, and Acunetix.

d. Interactive Application Security Testing

(IAST): Implement IAST tools to assess applications

in realtime during testing or runtime. IAST tools

instrument the application to monitor its behavior and

identify security vulnerabilities as they occur.

Examples include Contrast Security, Veracode, and

Synopsys.

e. Container Security: Secure containerized

applications by implementing container-specific

security controls. This

includes scanning container images for vulnerabilities,

enforcing secure configurations, and monitoring

container runtime behavior. Tools like Docker Security

Scanning, Anchore, and Aqua Security specialize in

container security.

f. Infrastructure as Code (IaC) Security: Apply

security controls to infrastructure code to prevent

misconfigurations and security weaknesses in cloud

Volume 2 Issue 1, January-March 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

environments. Utilize tools such as Terraform, AWS

Config, and Azure Security Center to enforce security

policies, monitor compliance, and detect unauthorized

changes to infrastructure configurations.

g. Secret Management: Securely manage and

store sensitive information such as API keys,

passwords, and cryptographic keys. Leverage secret

management solutions like HashiCorp Vault, AWS

Secrets Manager, and Azure Key Vault to centralize

secrets, enforce access controls, and rotate credentials

regularly.

h. Identity and Access Management (IAM):

Implement IAM best practices to control access to

resources and services based on the principle of least

privilege. Use identity federation, multi-factor

authentication (MFA), and role-based access control

(RBAC) to enforce granular access controls and

minimize the risk of unauthorized access.

i. Logging and Monitoring: Establish

comprehensive logging and monitoring capabilities to

detect and respond to security incidents in real-time.

Centralize logs from applications, infrastructure, and

security tools, and use SIEM (Security Information

and Event Management) solutions like Splunk, ELK

Stack, and Azure Sentinel for analysis and correlation

of security events.

j. Security Automation and Orchestration:

Automate security workflows and orchestrate security

processes to streamline incident response and

remediation. Implement security automation

frameworks like SOAR (Security Orchestration,

Automation, and Response) platforms to automate

repetitive tasks, coordinate incident response

activities, and enforce security policies across the

organization.

9. Conclusion:

In conclusion, implementing security by design

practice with DevSecOps is essential for organizations

to mitigate security risks and ensure the integrity of

their software applications. By integrating security into

every stage of the development lifecycle and

leveraging automation tools, organizations can achieve

a proactive and sustainable approach to security.

References:

[1] ISO/IEC 27001:2013, Information Security

Management Systems - Requirements, International

Organization for Standardization, Geneva,

Switzerland, 2013.

[2] IEEE Std 2444-2019, IEEE Standard for

Software Maintenance, Institute of Electrical and

Electronics Engineers, 2019.

[3] DevSecOps, Speed with Security: Setting up

new global teams, Infosys, 2019

[4] G. Kim, J Humble, P Debois, J Willis, The

DevOps Handbook: How to Create World-Class

Agility,

Reliability, & Security in Technology Organizations,

2017

