

Volume 1 Issue 4, October- December 2020

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal http://jtipublishing.com/jti

Evaluating High Availability and Performance in

Containerized Linux

Arun Pandiyan Perumal
Systems Integration Advisor, NTT DATA

Servicesarun4pap@gmail.com

Abstract:

In the pursuit of a robust and efficient computing infrastructure, system resilience and operational efficiency have

become indispensable. Conventionally, virtual machines (VMs) have been the cornerstone of infrastructure deployment

but are often hampered by significant resource overhead, scalability constraints, and extended failover durations. With

the evolution from VMs to containerized environments, this study aims to evaluate the enhancements in availability and

performance that containerized Linux environments provide over their traditional counterparts. As modern IT

infrastructures necessitate unprecedented system availability and performance levels, traditional VMs often falter due to

excessive resource needs, flexibility issues, and delayed recovery periods. Containerization, with its lightweight nature

and microservice-friendly architecture, offers a potential remedy to these challenges. Employing an empirical approach,

this study examines container technologies, including Docker and Kubernetes, across various Linux distributions. Key

performance indicators (KPIs) such as failover times, CPU and Memory utilization, scalability, network latency, I/O

throughput, etc., serve as evaluation criteria, which provide a comparative analysis against VMs. The findings reveal

that containerized environments significantly outperform VMs in terms of rapid scalability, improved fault tolerance,

and more efficient resource utilization, thereby enhancing overall system performance. The implications of these findings

suggest a pivot for both practitioners and researchers in technology infrastructure operations to consider containerized

frameworks. This study improves the current understanding by elucidating the benefits of container technologies

compared with conventional virtualization methods. This study underscores the need for continued research to refine

container technologies, potentially unlocking further advancements in high availability and performance.

Keywords: Containerization, Linux Containers, Virtual Machines (VMs), Container Engine (Docker), Container

Orchestration (Kubernetes), High Availability, System Performance.

1. Introduction

The advent of virtualization technologies has

revolutionized the domain of enterprise computing by

introducing unprecedented flexibility,

 improved resource management, and enhanced

security through isolation. Virtual machines (VMs)

are at the forefront of this evolution, enabling

multiple operating systems to coexist on a single

physical host, each running in an isolated

environment. The architecture of traditional VMs,

which relies on a hypervisor layer to manage guest

operating systems, has served in many use cases

ranging from server consolidation to application

testing and development environments [1]. Although

VMs are prevalent in enterprise environments, a

relentless pursuit of high availability and performance

remains imperative. In the context of mission-critical

applications, the costs associated

with downtime are directly linked to financial losses

and damage to reputation, necessitating architectures

designed to ensure uninterrupted service and swift

recovery from failure [2].

Journal of Technological Innovations

Est. 2020

Volume 1 Issue 4, October- December 2020
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

In recent years, containerization technology has

emerged as a compelling alternative to VMs,

particularly in Linux environments. Containers offer a

lightweight approach to virtualization, packaging

applications, and their dependencies on isolated

userspace instances [3].

Linux-based containers, epitomized by Docker and

orchestrated by Kubernetes, provide a lightweight

alternative to heavier VMs. Containers encapsulate

applications and their dependencies into a single

cohesive unit of deployment, leveraging the host OS

kernel and avoiding the need for a separate OS per

application, resulting in drastically reduced overhead.

Process isolation mechanisms, facilitated by Linux

features such as namespaces and cgroups, ensure

containers remain lightweight and secure [4].

Despite their widespread adoption, VMs exhibit

notable limitations and challenges, particularly in the

context of resource overhead, scalability, and failover

capabilities. Their inherent heaviness, owing to the

duplication of entire operating systems, contributes to

suboptimal resource utilization and can impede rapid

scaling. Moreover, in high- availability scenarios,

longer failover times associated with VMs can be

detrimental to service continuity. These deficiencies

highlight the need for improved high-availability and

high-performance solutions, particularly in

environments where rapid elasticity and

responsiveness are paramount [5].

The primary objective of this study is to thoroughly

evaluate how containerized Linux environments can

enhance availability and performance compared to

VMs. It aims to elucidate and quantify the benefits of

containerization, thereby providing empirical

evidence to support the growing consensus regarding

its efficacy. Furthermore, this study seeks to identify

and analyze how containerized environments can

successfully mitigate the shortcomings of VMs,

offering practical insights and recommendations for

enterprise adoption. To achieve this objective, we

employed an experimental design that encompasses

the selection of prominent containerization platforms

and tools for performance and availability monitoring

[6].

Key performance indicators such as failover times,

CPU and Memory utilization, scalability, network

latency, I/O throughput, etc., were meticulously

assessed to provide a quantitative basis for

comparison. The significance of this study extends to

the domains of system architecture and design,

offering valuable perspectives to organizations

contemplating a shift from VM-based infrastructure to

containerized solutions. By providing a detailed

performance and availability analysis, our work seeks

to inform decision-makers in tailoring their

infrastructure to achieve optimal operational

outcomes. In conclusion, this study will enhance our

understanding of containerization, VMs, and their

evolving roles in cloud computing technologies,

paving the way for further studies and innovations.

2. Problem Statement

Virtualization technology has played a pivotal role in

the advancement of enterprise computing by enabling

more efficient use of physical hardware resources and

providing the flexibility needed for the dynamic

scaling and management of applications. The VM

model, which typically involves the emulation of

entire operating systems on top of a physical server

using a hypervisor, has enabled businesses to improve

resource utilization and achieve better elasticity and

isolation [1]. However, as enterprise workloads grow

in complexity and scale, traditional VM-based

architectures increasingly face limitations that can

impede the agility and efficiency of modern

applications. These limitations can be categorized into

several key areas.

 Resource Overhead and Inefficiency:

One of the most significant limitations of VMs is the

resource overhead associated with running multiple

instances of full-fledged operating systems on a single

physical host. Each VM requires a complete set of

virtualized hardware, including the CPU, memory,

disk, and network interface, which can result in the

underutilization of physical resources [5]. This

inefficiency is amplified in environments where

numerous VMs are deployed, leading to increased

power consumption and cooling requirements,

affecting operational costs and environmental

sustainability.

Volume 1 Issue 4, October- December 2020
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Scalability Concerns:

Due to the overhead of running a full OS stack, scaling

applications horizontally or adding more instances in

a VM- based infrastructure can be slower and more

resource-intensive. Booting up a new VM instance

takes considerably longer because the entire operating

system and all services need to be loaded, which can

impede rapid scaling and responsiveness to fluctuating

workloads [6].

Failover and High Availability:

High-availability scenarios necessitate architectures

that swiftly recover from failures to minimize

downtime. Migrating VMs for failover purposes

involves a significant amount of data transfer due to

the size of the VM images, the need to boot entire

operating systems, and the restoration of application

states, leading to delays that could be detrimental to

mission-critical applications [6][8].

Complexity in Management and Operations:

Managing a large fleet of VMs entails dealing with the

intricacies of multiple operating systems, patching,

and configurations. This can lead to increased

operational costs, a higher chance of

misconfiguration, and a larger attack surface for

security threats [8]. The complex nature of VMs,

coupled with the need for a hypervisor and full OS

stacks, can lead to infrastructure rigidity.

3. Containerization Technology in

Linux Environments

Containerization, particularly in Linux environments,

represents a significant evolution in virtualization. It

offers a streamlined and efficient approach to

deploying and managing applications. The

lightweight, virtualized, isolated, and portable nature

of containers has accelerated their adoption across

industries. The concept of containerization was

significantly enhanced by the introduction of cgroups

into the Linux kernel in 2008 and further matured with

the development of Linux Containers. Containers

provide improved resource consumption, faster

deployment times, and more consistent operations in

different environments [3].

Containerization involves encapsulating an

application and its dependencies into a container

image that can be executed consistently across

different computing environments. Unlike VMs,

containers share the host system's kernel yet maintain

process and filesystem isolation through Linux

features, such as namespaces, cgroups, and SELinux.

Linux containers offer an environment as close to a

VM as possible without the overhead of running a

separate kernel and simulating all the hardware [3][4].

This efficacy is particularly advantageous for

microservices, where each service runs in its

container. Namespaces are a key feature of the Linux

kernel that provides isolation by partitioning kernel

resources such that one set of processes sees one set of

resources while another set of processes sees a

different set of resources. This isolation can include

aspects of the system, such as process IDs, network

interfaces, and mount points. Control groups

(cgroups) allow the Linux kernel to organize processes

into hierarchical groups, allowing the management of

resources such as CPU, memory, network bandwidth,

or combinations of these resources. Cgroups are

essential to prevent containers from consuming

excessive resources and affecting other containers.

Security-Enhanced Linux (SELinux) is a Linux

security module that provides a mechanism for

supporting access control security policies. In the

context of containers, SELinux can enforce mandatory

access controls that restrict the interaction between the

containerized applications and the host system,

thereby bolstering security [4].

Container engines and orchestration tools are pivotal

technologies in containerization, enabling the

creation, deployment, and management of containers

at scale. These tools and technologies are essential for

leveraging the benefits of containerization in software

development and operation. A container engine, such

as Docker, is a piece of software responsible for

managing the lifecycle of containers. Docker has

emerged as a leading container engine, simplifying

container creation, deployment, and running through

its platform. It uses a client-server architecture with

the Docker daemon to manage container objects such

as images, containers, networks, and volumes [13].

Container orchestration, such as Kubernetes,

automates the deployment, management, scaling,

Volume 1 Issue 4, October- December 2020
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

networking, and availability of containerized

applications. Kubernetes is an open-source platform

that manages and orchestrates the application

containers across clusters of hosts in large, dynamic

environments, providing a resilient framework for

running distributed systems [3][10].

The adoption of containerization in the industry has

grown due to its portability, efficiency, and

expandability for application deployment, driven by

the need for agile development practices,

microservices architectures, and DevOps

methodologies.

4. Adopting Containerization to

address the limitations of Virtual

Machines

Containerization, represented predominantly by

technologies such as Docker and orchestrated by

systems like Kubernetes, has significantly altered the

virtualization landscape and has addressed many

challenges conventionally associated with Virtual

Machines (VMs).

 Achieving high availability:

VMs rely on established clustering and replication

methods to achieve high availability, but the boot-up

times of VMs can be a limitation for rapid failover.

Containers, being lightweight and starting quickly,

improve high availability strategies by enabling faster

restarts and scaling. Container orchestration systems

like Kubernetes provide built-in mechanisms for

health checking, self-healing (automatic restarts), and

rolling updates, contributing to high availability

without additional clustering software [7].

Enhancing operational efficiency:

VMs incur performance overhead due to the complete

virtualization of hardware and the need to run multiple

OS instances. Containers share the host system's

kernel, avoiding the need to run a full OS stack for

each application instance. This results in a significant

reduction in system overhead, leading to better

performance when compared to VMs [9]. Containers

start faster and have a smaller footprint, which is

particularly beneficial for applications that require

rapid scaling or frequent redeployments.

Recovery failover:

Failover can be resource-intensive and slow in a VM

environment, as it often involves booting up an entire

VM on another host. The Kubernetes can

automatically detect and replace failed containers

much faster than traditional VM failover processes.

This quick failover is possible because containerized

applications are designed to be stateless and

ephemeral [10].

Optimization of resources:

Containers are more efficient resource-utilizers than

VMs because they allow for higher density. A single

host can run many more containers than VMs since

containers require less overhead. This efficient use of

server resources can lead to cost savings and reduced

environmental impact due to lower power

consumption [11].

Scalable instances:

Containers are inherently more scalable than VMs due

to their lightweight nature. The Kubernetes can

automate the scaling process, spinning up new

containers as demand increases and decommissioning

them as demand decreases. This automated, horizontal

scaling is more fine-grained and faster than scaling

VMs, a critical advantage in modern cloud- native

application environments [7].

Reduced management overhead:

Volume 1 Issue 4, October- December 2020
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

VMs incur considerable overhead due to the

hypervisor and multiple guest operating systems.

Containers minimize this overhead by abstracting the

application from the underlying infrastructure, which

translates into better performance and lower latency.

The declarative nature of Kubernetes allows for

infrastructure as code (IaC), making it easier to

manage, replicate, and deploy containerized

environments [14].

The primary distinction between VMs and containers

lies in their architectural approach to virtualization.

VMs utilize hypervisors to create fully isolated

environments with dedicated resources. At the same

time, containers share the host OS kernel, allowing for

a more lightweight and efficient system that reduces

redundancy and overhead. The streamlined

architecture of containers translates to reduced

latency, improved performance, and increased

application availability.

5. Comparative Analysis for

performance evaluation

The comparative analysis leverages experimental data

to evaluate containerized Linux environments against

VMs across the identified Key performance

indicators. The below approach was used to perform

the analysis using a combination of synthetic and real-

world workload scenarios.

Environment Setup:

Created a containerization environment using Docker

and Kubernetes to manage and orchestrate the Linux

containers. Deployed a set of identical services in

VMs and containerized environments. Maintained the

hardware resources and software versions were

consistent across both setups to minimize variables

affecting performance.

Benchmarking Tools:

Utilized industry-standard tools such as Apache

JMeter for network performance, Sysbench for CPU,

memory, and I/O benchmarks, and Prometheus with

Grafana for real-time monitoring and visualization of

resource utilization.

Performance Metrics:

The following key metrics were used for performance

evaluation,

Failover times - Uptime percentages, Mean Time

Between Failures (MTBF), and Mean Time to

Recovery (MTTR) for service availability. Recovery

Point Objectives (RPO) and failover times to assess

redundancy strategies.

CPU Utilization - Percentage of CPU resources

utilized during idle and peak loads.

Memory Utilization - Memory usage efficiency,

including total memory used and available under

various loads.

Scalability - The time to scale out and scale in and the

performance impact of scaling the container instances.

I/O Throughput - Disk throughput, IOPS, and latency

measurements.

Network Latency - Network throughput and ping

Round-Trip Time (RTT) for network performance.

Data Collection Process:

Performance data was collected using the selected

benchmark tools, where both containerized Linux

environments and VMs were induced with similar

workloads that reflect typical usage patterns and stress

conditions to evaluate how each environment handled

high demand.

The statistical analysis underpins the comparative

results, with containerized environments showing

statistically significant improvements in resource

utilization, startup times, and scalability. The high

availability metrics favored containerized

environments due to Kubernetes' orchestration

capabilities, which streamline replication and

recovery.

Failover times for service availability:

Containerized environments demonstrated

significantly shorter failover times and MTTR due to

their lightweight nature and rapid provisioning

capabilities. MTBF was also improved, indicating

Volume 1 Issue 4, October- December 2020
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

higher reliability. VMs, while robust, showed longer

recovery times, affecting the RPO for redundancy

strategies.

CPU and Memory Utilization:

Containers showed a more efficient CPU utilization

pattern, particularly under peak load conditions, due to

minimal overhead. VMs exhibited higher CPU

overhead under similar conditions, primarily due to

the hypervisor layer. Containers were more efficient in

memory usage, with better memory allocation and

deallocation strategies, leading to a higher availability

of memory resources under various load conditions.

VMs consumed more memory, partly due to the

overhead of the guest operating systems.

Scalability:

Containerized environments scaled out and scaled in

more swiftly than VMs, directly impacting

performance positively during dynamic load

adjustments.

I/O Throughput:

I/O operations were generally more efficient in

containerized environments, with higher IOPS and

lower latency, attributable to direct access to the host

OS's I/O capabilities. VMs faced additional overhead,

leading to reduced I/O throughput.

Network Latency:

Containers provided better network performance, with

lower RTT measurements and higher throughput,

benefiting from optimized networking stacks. VMs

experienced higher latency due to additional

virtualization layers. The experimental results

underscored containerized environments' superior

availability and performance compared to traditional

VMs. The implications of these findings are profound,

suggesting that containerized environments can

significantly reduce operational costs by optimizing

resource utilization and minimizing downtime [12].

This transition boosts performance and enhances the

resilience of applications against failures, thereby

ensuring business continuity. The shift to

containerized solutions requires re-evaluating

traditional system architecture and design principles.

Organizations can leverage containerization by

adopting microservices architectures to improve the

modularity and scalability of applications. This study

provides decision-makers with a detailed

understanding of the performance benefits and

highavailability features of containerized

environments [15]. With the comparative analysis

between containerization and VMs, the study informs

infrastructure choices that align with organizational

objectives and technical requirements. Ultimately, the

study emphasizes the importance of containerization

for organizations looking to modernize their IT

infrastructure and improve operational competence. It

highlights the need for organizations to adapt to

evolving technologies to maintain competitive

advantage and meet the growing demands for

reliability and efficiency in digital services.

6. Conclusion

This study contributes to the evaluation of the high

availability and performance of containerized Linux

environments, aiming to address the shortcomings

inherent in traditional VMs. The comparative analysis

involving container engines and orchestration tools,

such as Docker and Kubernetes, with Key

performance indicators revealed that containerized

environments excel in rapid scalability, enhanced fault

tolerance, and efficient resource utilization, thereby

contributing

to superior system performance. Specifically, the

study highlighted the lightweight nature of containers,

enabling faster startup times and reducing the

overhead of running multiple instances of full-fledged

operating systems. By leveraging the inherent

advantages of containers, organizations can achieve

unprecedented levels of agility, performance, and

reliability, which are essential for meeting the

demands of modern applications and workloads.

Future studies can delve into advanced topics such as

container security, multi-cloud container

deployments, and the integration of containerization

with emerging technologies like serverless computing

and edge computing, driving forward innovation in the

realm of container technologies.

Volume 1 Issue 4, October- December 2020
Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

References

[1] J.E. Smith, & R. Nair, The Architecture of

Virtual Machines, IEEE Computer, 38(5), 32-38, May

2005.

[2] M. Arnold, S.J. Fink, D. Grove, M. Hind, and

P.F. Sweeney, A Survey of Adaptive Optimization in

Virtual Machines, Proceedings of the IEEE, vol. 93,

no. 2, pp. 449-466, February 2005.

[3] D. Bernstein, Containers and Cloud: From

LXC to Docker to Kubernetes, IEEE Cloud

Computing, vol. 1, no. 3, pp. 81-84, September 2014.

[4] D. Merkel, Docker: lightweight Linux

containers for consistent development and

deployment, Linux Journal, May 2014.

[5] P. Sharma, L. Chaufournier, P. Shenoy, and

Y.C. Tay, Containers and Virtual Machines at Scale: A

Comparative Study, Proceedings of the 17th

International Middleware Conference, November

2016.

[6] W. Felter, A. Ferreira, R. Rajamony, and J.

Rubio, An updated performance comparison of virtual

machines and Linux containers, IEEE International

Symposium on Performance Analysis of Systems and

Software, March 2015.

[7] E. Casalicchio and V. Perciballi, Auto-

Scaling of Containers: The Impact of Relative and

Absolute Metrics, IEEE 2nd International Workshops

on Foundations and Applications of Self* Systems,

September 2017.

[8] N. Regola and J-C. Ducom,

Recommendations for Virtualization Technologies in

High-Performance Computing, 2010 IEEE Second

International Conference on Cloud Computing

Technology and Science, November 2010.

[9] M.G. Xavier, M.V. Neves, F.D. Rossi, T.C.

Ferreto, T. Lange, and C.A.F. De Rose, Performance

Evaluation of Container-Based Virtualization for

High-Performance Computing Environments,

Euromicro International Conference on Parallel,

Distributed, and Network-Based Processing, February

2013.

[10] K. Hightower, B. Burns, J. Beda, Kubernetes:

Up and Running: Dive into the future of

Infrastructure, O’reilly, October 2017.

[11] Z. Li, M. Kihl, Q. Lu, and J.A. Andersson,

Performance Overhead Comparison between

Hypervisor and Container Based Virtualization, IEEE

31st International Conference on Advanced

Information Networking and Applications (AINA),

March 2017.

[12] S. Fernandes, J. Barreto, P.T. Endo, D.

Beserra, E.D. Moreno, and D. Sadok, Performance

analysis of Linux containers for high-performance

computing applications, International Journal of Grid

and Utility Computing, December 2017.

[13] P. Saha, A. Beltre, P. Uminski, and M.

Govindaraju, Evaluation of Docker Containers for

Scientific Workloads in the Cloud, Proceedings of the

Practice and Experience on Advanced Research

Computing, July 2018.

[14] W. Li, A. Kanso, and A. Gherbi, Leveraging

Linux Containers to Achieve High Availability for

Cloud Services, IEEE Xplore, March 2015.

[15] J. S. Hale, L. Li, C.N. Richardson, and G.N.

Wells, Containers for Portable, Productive, and

Performant Scientific Computing, Computing in

Science & Engineering, November 2017.

