
Journal of Technological Innovations

Est. 2020

Volume 6 Issue 1, January – March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
http://jtipublishing.com/jti

Predictive Software Defect Identification with Adaptive Moment

Estimation based Multilayer Convolutional Network Model

Mohnish Neelapu

Email id: neelapu1001@gmail.com

Abstract

The practice of predicting software errors in quality assurance now experiences a significant advancement through AI automation.

The system uses natural language processing together with data analytics and machine learning techniques to examine historical

records in order to make defect identification. The existing defectidentification models struggle with various challenges that stem

from noisy data and class imbalanced datasets and complex pattern recognition tasks because their performance deteriorates. In

this research develop a new model Adaptive Moment Estimation based Convolutional Neural network –Multi Layer Perception

model (Adam based CNN-MLP), for defect identification as it combines CNN features extraction power with adaptive MLP

identification capabilities. The system extracts essential data points from unprocessed information while developing general skills

through its ability to detect intricate patterns between software faults. The CNN segment first extracts spatial patterns from the

data before the MLP component uses identification abilities to analyze high-level dependencies. The combination of AI advanced

features creates an optimal solution which enables efficient and accurate scaling of software defect identification while expanding

AI quality management capabilities in software engineering

Keywords: Predictive software Defect Identification, Convolutional Neural Network, Multi-Layer Perceptron, hybrid

Convolutional Neural Network and Multi-Layer Perceptron.

Introduction
Predictive Software Defect Identification system uses AI-

based Quality Engineering to resolve the testing constraints

that exist in contemporary software development practices

[1]. Standard quality assurance faces difficulties in meeting

application complexity requirements and security standards

because organizations now widely use cloud computing

together with micro services and IoT technology along with

Artificial Intelligence capabilities [2]. Current business needs

more rapid product releases as well as real-time application

monitoring to maintain competitiveness yet standard defect

detection methods cannot meet these requirements [3]. AI-

based identification models which use machine learning and

deep learning technology help identify defects in advance

through the analysis of historical information and code

structures with system activities [4]. The intelligent

automation boosts product reliability through faster

development times while ensuring top-quality software

outcomes which makes predictive defect identification vital

for software engineering [5].

The testing processes that heavily depend on manual testing

combined with scripted test cases commonly fail to detect

advanced bugs before the development lifecycle reaches its

latter phases [6-7]. The manual testing methods used by these

systems become ineffective for processing extensive

applications because they require excessive time and

resources. Inaccurate identification emerge from models

designed to detect defects because faulty historical data that

lacks consistency or completeness becomes a problem for

identification accuracy [8]. When AI models operate as black

box systems it creates difficulties for developers to understand

how identification were made so they become doubtful about

system reliability [9]

A more integrated method should be used to eliminate these

system limitations. The accuracy of AI identificationdepends

on enhancing the data quality utilized for training AI models

thus requiring complete accurate and consistent defect data

labels for better outcomes [10-12]. Hybrid automation

solutions which unite AI-based systems and human testers

solve interpretability problems because they enable testers to

see how AI makes its identification. AI model efficiency

requires continuous observation and repeated training to allow

them to recognize emerging patterns and trends within the

software development process [13-14]. AI-powered defect

identification systems gain robustness together with reliability

through the implementation of these strategies which leads to

http://jtipublishing.com/jti

Volume 6 Issue 1, January – March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
http://jtipublishing.com/jti

transparent improvements in software quality management

[15].

• Adam based CNN-MLP:The proposed Adam-

based CNN-MLP model enhances software defect

identification by integrating CNN for effective feature

extraction and MLP for robust classification. Unlike existing

models, it addresses challenges such as high computational

complexity, overfitting, and slow convergence. LDA

preprocessing improves class separability and reduces

redundant features, optimizing computational efficiency. The

Adam optimizer dynamically adjusts learning rates, ensuring

stable convergence and reducing overfitting. This approach

enhances accuracy, robustness, and efficiency, making it a

more effective solution for software defect identification.

Literature Review
Ahmed Abdu et al. [1] created Ensemble Convolutional

Neural Network deep learning which serves as an approach

for software defect identification. This research strives to

develop a dependable approach for software defect

identification within specific projects to aid engineers during

resource management for high quality software delivery.

Predictive results improve due to this method because it

detects both numerical data patterns and semantic

comparisons. The approach has limited effectiveness because

semantic feature extractions using Word2Vec might not work

reliably or accessibly in particular situations. The study by

Mohd Mustaqueem et al. [2] developed the sampling,

identification, and Analysis Model (SPAM) with Explainable

Artificial Intelligence system as a hybrid deep learning

framework to predict software defects with XAI approaches

to improve performance visibility. The SPAM-XAI model

provides transparent insights into how features relate to error

status which leads to better understandable identification. The

method enhances transparency together with raising

identification accuracy. The non-linear models lead to harder

interpretation and higher computational complexity serves as

the main disadvantages. Andressa Borre et al. [3] developed

hybrid Convolutional Neural Network (CNN)-Long Short-

Term Memory (LSTM). This method merges CNN with

LSTM network for its operation. The method functions to

anticipate electrical machine breakdowns and handles data-

related uncertainties effectively. High accuracy and Time-

Series data suitability stand out as key advantages of this

method while its main drawback includes high computational

complexity, Over fitting and needs extensive data quantities.

The research by Sajid Mehmood et al. [4] presents a detection

system for distributed denial of service attacks in Software-

Defined Networks (SDN) through optimizing a combination

of Convolutional Neural Networks (CNN) and Multi-Layer

Perceptron (MLP) with an optimizer-equipped approach. The

research presents possible approaches for future SDN network

security development. The usage advantages of this method

include increased scalability as well as better detection

precision. The main drawbacks of this approach involve

complex computations and unclear model explanations.

A.Challenges

• Real-time deployment becomes complicated

because the unified structure of CNN, LSTM, and attention

mechanisms creates high computational complexity [1].

• The model needs extensive labeled data for effective

training but such resources might be scarce particularly when

detecting faults [2].

• Overfitting due to the large number of parameters in

CNN and LSTM models, particularly with small datasets. [2].

• Real-time detection could be affected by the Adam

based CNN-MLPmodel and optimizer because they increase

computational expenses. [3].

• The detection system requires extensive labeled

training data to function effectively yet such data might prove

difficult to acquire for DDoS detection purposes [4].

• The combination of software metrics complexity

with the optimizer creates computational challenges that make

model convergence difficult to handle. [5].

• The complex CNN-MLP hybrid approach makes it

challenging to determine precise defect identification reasons

because of its limited interpretability capabilities [6].

• The uneven distribution of defective and non-

defective instances within the data causes identification bias

because of data imbalance. [6].

• The lack of interpretability in CNN and MLP models

creates difficulties for software engineers to trust their

identification because the models operate as black boxes [6].

PROPOSED METHODOLOGY FOR PREDICTIVE

SOFTWARE DEFECT IDENTIFICATION WITH

ADAPTIVE MOMENT ESTIMATION BASED CNN-

MLP MODEL

This research proposes a predictive software defect

identification model by utilizing anAdam based CNN-MLP

approach, where the input is collected from a software defect
identification

dataset(https://www.kaggle.com/datasets/semustafacevik/sof

tware-defect-prediction) that includes software metrics such

as lines of code, complexity measures, and other relevant

features. The dataset requires Linear Discriminant Analysis

(LDA) preprocessing before it can proceed. By employing

LDA the model achieves better identification results because

this method preserves class separability in reduced feature

spaces. The Adam based CNN-MLPmodel receives

preprocessed data for its software Defect Identification. The

Adam based CNN-MLPmodel uses the best qualities of both

its components to enhance software defect identification

accuracy along with robustness performance. The model

http://jtipublishing.com/jti
https://www.kaggle.com/datasets/semustafacevik/software-defect-prediction
https://www.kaggle.com/datasets/semustafacevik/software-defect-prediction

Volume 6 Issue 1, January – March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
http://jtipublishing.com/jti

optimization process uses Adam as an optimization algorithm

which adjusts individual parameter learning rates during

training. Adam employs first and second gradient moments

during training for stable convergence while boosting the

efficiency of the overall process. The predictive software

Defect Identification system utilizes Adaptive Moment

Estimation based Adam based CNN-MLPmodel as shown in

Fig. 1. Input from software defect identificationdataset.

Preprocessing using linear discriminant analysis.

Fig. 1. Architecture for Predictive software Defect Identification with Adam based CNN-MLPmodel

A. Input Collection from Software Defect identification Dataset:

The main dataset derives from Software Defect identification

Dataset

https://www.kaggle.com/datasets/semustafacevik/software-

defect-identification and contains static code attributes alongside

maintainability index, cyclomatic complexity, lines of code and

code chum features. These performance indicators present

information about defect-prone modules in the gathered software

project data. Working and faulty outcomes in the data help the

model identify patterns that relate to software quality levels.

A = ∑ ⬚n
a=1 Sa,

(1)

Where, A denotes the dataset, Sa denotes the number of

metrics present in the dataset with values ranges from 1 to n.

B. Preprocessing Using linear discriminant analysis:

LDA is used as a preprocessing step in software defect

identification to reduce dimensionality while preserving class

separability. The dataset includes features like lines of code,

complexity measures, and coupling metrics, which may

introduce redundancy. LDA projects data onto a lower-

dimensional space to maximize the distinction between defective

and non-defective components, unlike PCA, which focuses on

variance. This enhances feature representation, improves

generalization, and accelerates convergence when applied before

training the CNN-MLP model, ultimately boosting defect

identification accuracy.

 XLDA = WTSa
 ∗ (2)

C. Hybrid Convolutional -Multi layer model for software defect

identification:

The preprocessed output forms the input for the Adam based

CNN-MLPmodel for software defect identification.The Adam

based CNN-MLPmodel combines deep learning features of

CNN with MLP’s classification through a unified framework to

achieve higher predictive accuracies. Data patterns become

detectable through CNN because the framework uses

convolutional filters together with ReLU activations and pooling

layers to purify critical information within the data. The

processed features move through MLP which enables effective

defect classification to reach better predictive modeling

performance. The main function of CNNs involves spatial data

processing yet they need a classifier to generate final

identification. MLP serves as the classification decision engine

because it utilizes fully connected layers to process extracted

features. A one-dimensional vector derived from the CNN

output moves to the MLP before it utilizes Sigmoid or SoftMax

activation functions to calculate defect probabilities. The

combination of CNN and MLP within this hybrid model

strengthens defect identification software by extracting effective

features before performing exact classification operations. Adam

based CNN-MLPmodel receives its input through combined

output data from both CNN and MLP. The equation for Adam

based CNN-MLPmodel is calculated by using the inputs are,

 XCNN = ReLU(Conv 2D(XLDA) + BCNN) (3)

Xflattened = Flatten(XCNN), (4)

XMLP = σ(W2. MLP(Xflattened) + b2), (5)

The output equation be,

HCNN−MLP = concat(XCNN,XMLP) (6)

Predictive software Defect Identification with Adaptive Moment

Estimation based CNN-MLP model

Adaptive

moment

estimation.

http://jtipublishing.com/jti
https://www.kaggle.com/datasets/semustafacevik/software-defect-prediction
https://www.kaggle.com/datasets/semustafacevik/software-defect-prediction

Volume 6 Issue 1, January – March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
http://jtipublishing.com/jti

The final output HCNN−MLP represents the probability of a

software component being defective or not. Fig. 2 illustrates the

Architecture for the proposedAdam based CNN-MLP model.

Fig. 2. Architecture for the proposed Adam based CNN-MLP

model.IV. Proposed adaptive moment Estimation

Algorithm:
The Adam algorithm optimizes the CNN-MLP model by

dynamically tuning the weights and biases during training. These

functions allow the model to perform updates that merge

Momentum-based Gradient Descent with RMSprop advantages.

The Adam optimizer serves as an effective tool for training deep

networks especially when used with the Adam based CNN-

MLPmodel for software defect identification.

A. parameters initialization

The model parameters consisting of weights (W) and biases (b)

receive initial values to extract meaningful patterns from the

dataset for better predictive accuracy. Adam optimizer manages

two fundamental moment estimates through mt that follows an

exponential weighted average of past gradients and vt that tracks

an exponential weighted average of past squared gradients to

control update scaling. Adam needs a learning rate (η) to control

step size together with decay rates (β1 and β2) to balance past

contributions and a small constant (ϵ) to prevent division by zero

for achieving stable and efficient parameter updates.

B. Gradient of loss function

The calculation of gradient for the loss function occurs with

respect to model parameters during every iteration. The loss

function determines model defect identification accuracy while its

gradient indicates the parameter adjustment direction.

gt = ∇Loss(W, b) (7)

Where gtrepresents the gradient at iteration t, this gradient

indicates whether parameters should be increased or decreased

to minimize the loss.

Input

Convolutional Neural Network

 Max

Convolutional layer Pooling layer

Multi-layer Perceptron

 Output

 Layer

Input layer

Hidden Layer

Defective

Non-Defective

http://jtipublishing.com/jti

Volume 6 Issue 1, January – March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
http://jtipublishing.com/jti

C. First Moment Estimate

Adam implements the first moment estimate to build a

history of gradient accumulation which stabilizes its update

functions. Adam performs calculations using smoothed gradient

values obtained through an exponential moving average instead

of raw gradient data,

mt = β1mt−1 + (1 − β1)gt, (8)

Where,

The term mt helps smooth out noisy updates, preventing

sudden drastic changes in weights.

The hyper parameter β
1
determines how much of the past

gradients contribute to the update.

D. Second Moment Estimate

Adam updates differ from standard gradient descent because

it tracks both gradient magnitude and its time-dependent second

moment calculation. The method controls big update variations

to keep learning operations stable.

 vt = β2vt−1 + (1 − β2)g2
t
, (9)

Where,

▪ vt be the updated second moment estimation,

▪ β
2
 controls how much past squared gradients influence

the current update,

▪ g2
t
 represents the square of current gradient.

E. Bias correction for first and second moments

The starting values for first and second moment estimates are

zero at training onset. The early updating values exhibit zero bias

because the initial estimates start at zero which leads to improper

update calculations. The implementation of bias correction

produces unbiased estimates that fix the initial issue with the

moments.

mt̂ =
mt

1−β1
t , vt̂ =

vt

1−β2
t , (10)

Adam does not rely on overly small or biased moment

estimates in the initial stages, leading to more stable training.

F. Model parameters using Adam update rule

The model receives its updates based on the unbiased

moment estimates we have obtained. The learning rate falls

under dynamic adjustment per parameter during this step which

enhances the training process by avoiding overcorrection.

W = W −
ηmt̂

√vt̂+ε
, b = b −

ηmt̂

√vt̂+ε
 (11)

Where,

o W and b are the weights and biases being optimized,

o Η be the learning rate,

o mt̂ and vt̂ are the corrected moment estimates obtained

in the previous step.

G. Check Stopping Criteria

Adam executes multiple optimization steps until it fulfils one

of its predefined stopping criteria. The algorithm terminates after

completing the predefined training epoch count which represents

the first termination condition. The model stops training when

loss convergence occurs because the changes in the loss function

become minimal which indicates the model has achieved its

optimal solution. The training process stops when validation

accuracy remains unchanged across multiple iterations in order

to avoid Overfitting.

H. Output the Optimized model

After completing all optimization steps, the best set of

parameters (weights and biases) are obtained as,

W∗, b∗, (12)

Where,

✔ W∗, b∗ are the final optimized weight and bias value.

These optimized parameters are now used in Adam based

CNN-MLPmodel for software defect identification, ensuring that

the model generalizes well to new data and achieves high

accuracy.

TABLE I

 PSEUDOCODE FOR THE ADAM ALGORITHM:

S.No Pseudocode for the Adam Algorithm

1 Initialize parameters: Set weights W, biases b, first

moment mt =0, second moment vt=0, learning rate η,

and hyperparameters β
1

, β2,ϵ.

2 Compute gradients: Calculate the gradient of the loss

function, gt = ∇Loss(W, b).

3 Update first moment estimate: Compute

exponentially weighted moving average of gradients,

mt = β1mt−1 + (1 − β1)gt.

4 Update second moment estimate: Compute

exponentially weighted moving average of squared

gradients, vt = β2vt−1 + (1 − β2)g2
t
.

5 Bias correction: Adjust moment estimates to correct

initialization bias, mt̂ =
mt

1−β1
t , vt̂ =

vt

1−β2
t .

6 Parameter update: Update weights and biases using

the Adam update rule, W = W −
ηmt̂

√vt̂+ε
, b = b −

ηmt̂

√vt̂+ε
.

7 Stopping criteria: Repeat 4.2 to 4.6 until convergence

is achieved.

8 Output optimized parameters: Return the final

updated weights W and biases b that minimize the loss

function.

Result and discussion

AnAdam based CNN-MLPmodel for predicting software defects

developed in this study. By comparing its performance to that of

other top models, its effectiveness is evaluated.

http://jtipublishing.com/jti

Volume 6 Issue 1, January – March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
http://jtipublishing.com/jti

A. Experimental Setup

The software defect identification Experiment is carried out

using a Python script (version 3.7.6) on a Windows 10 OS with

8GB of RAM.

B. Dataset description:

Software Defect identification Dataset description [21]:

The Kaggle Software Defect identification Dataset enables

evaluations through software module measurement data

composed of lines of code (LOC), cyclomatic complexity, depth

of inheritance tree (DIT), coupling between objects (CBO) and

other structural elements that determine defect sensitivity. The

model contains two possible outcomes which are defective (1)

and non-defective (0) thus making it appropriate for binary

classification tasks. The dataset covers several software versions

which enable researchers to study model generalization

capabilities. The identification accuracy suffers due to the class

imbalance problem that exists when defective modules occur

less frequently than non-defective modules. The data collection

serves as a fundamental resource for developing early defect

detection systems that improve software quality together with

reliability.

C. Performance Analysis based on TP:

Fig. 3 demonstrates the effectiveness of the Adam based

CNN-MLPmodel in software defect identification by analyzing its

performance across varying epochs (100, 200, 300, 400, and

500) while maintaining a TP of 90. In Fig. 3a, it is evident that

the accuracy for these epochs attained remarkable levels: 79.5%,

89.5%, 83.5%, 80%, and 97%. Similarly, Fig. 3b indicates that

the Adam based CNN-MLPmodel reached its higher precision

scores of 79.5%, 89.5%, 83.5%, 80%, and 97% also

corresponding to the same TP of 90. Additionally, Fig. 3c

presents findings for the same epochs, showcasing the higher

recall rates of 80%, 89%, 85%, 81%, and 97.5% at a TP of 90.

Lastly, Fig. 3d reveals the f1-score results for the Adam based

CNN-MLP model at a TP of 90, highlighting peak value of

85.3%, 90.6%, 89.9%, 89.5%, and 99.1%.

a) Accuracy b) Precision

c) Recall d) F1-score

Fig. 3. Performance analysis based on TP a) Accuracy, b) Precision, c) Recall, and d) F1-score.

http://jtipublishing.com/jti

Volume 6 Issue 1, January – March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
http://jtipublishing.com/jti

D. Comparative Methods

To emphasize the accomplishments of the Adam based CNN-

MLPmodels, a comparison was done. This investigation

employed a number of techniques, such as Ensemble CNN [1],

SPAM-XAI method [2], hybrid CNN-LSTM model [3], CNN

with optimizer –equipped approach [4].

1) Comparative analysis based in TP

The Adam based CNN-MLP model performed better than the

CNN with optimizer –equipped model at predicting software

defects at a TP of 90 through an improvement of 17.52% which

reached a peak accuracy of 97% as illustrated in fig. 4a.

Fig. 4b demonstrates how the Adam based CNN-MLP

provides superior forecasting capabilities for software defects

than the CNN with optimizer –equipped model while reaching a

97% precision level at a TP of 90. This leads to a 17.52%

performance advantage.

The Adam based CNN-MLP model surpassed the CNN with

optimizer –equipped model by 16.92% in its software defect

identification while attaining a maximum recall of 97.5% at a TP

of 90.

Fig. 4d shows that the Adam based CNN-MLP model

outperforms the DE model for software defect identification

through an f1-score of 97.5% at a TP of 90 while providing

15.89% more performance than the CNN with optimizer –

equipped model.

a) Accuracy b) Precision

c) Recall F1-score

Fig. 4.Comparative Analysis based on TP a) Accuracy, Precision, c) Recall, and d) F1-score.

E. Comparative discussion table during TP 90

Existing software defect identification models, such as

Ensemble CNN, SPAM-XAI, Hybrid CNN-LSTM, and CNN

with Optimizers, face challenges like high computational

complexity, feature extraction difficulties, overfitting, and slow

convergence. Ensemble CNN improves accuracy but increases

complexity, SPAM-XAI enhances interpretability at the cost of

performance, Hybrid CNN-LSTM captures sequential

dependencies but struggles with vanishing gradients, and CNN

http://jtipublishing.com/jti

Volume 6 Issue 1, January – March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
http://jtipublishing.com/jti

with Optimizers lacks adaptability in learning rate adjustments.

The proposed Adam-based hybrid CNN-MLP model addresses

these issues by combining CNN for feature extraction and MLP

for classification, ensuring efficient learning and decision-

making. The comparative discussion table based on TP 90 can

be found in Table II.

TABLE II

COMPARATIVE DISCUSSION TABLE FOR TP 90.

Conclusion
The proposed Adam based hybrid CNN-MLP model establishes

an AI-based Quality engineering system which makes exact

decisions about software defect identification. The Adam based

hybrid CNN-MLP Framework begins its process by improving

data quality through noise reduction. The Hybrid CNN-MLP

model receives the preprocessed dataset for processing at the

same time it utilizes an adaptive learning rate mechanism which

speeds up convergence and boosts model stability during

training sessions. The research addresses model limitations by

providing exact defect monitoring and better software quality

through its solution.

References

[1]A. Abdu, Z. Zhai, H. A. Abdo, R. Algabri, M. A. Al-Masni,

M. S. Muhammad, and Y. H. Gu,“Semantic and traditional

feature fusion for software defect prediction using hybrid

deep learning model,” Scientific Reports, vol. 14, no. 1, pp.

14771,2024.

[2]M. Mustaqeem, S. Mustajab, M. Alam, F. Jeribi, S. Alam, and

M. Shuaib, “A trustworthy hybrid model for transparent

software defect prediction: SPAM-XAI,” Plos one, vol. 19,

no. 7, pp. e0307112,2024.

[3] A. Borré, L. O. Seman, E. Camponogara, S. F. Stefenon, V.

C. Mariani,andL. D. S. Coelho, “Machine fault detection

using a hybrid CNN-LSTM attention-based

model,” Sensors, vol. 23, no. 9, pp. 4512,2023.

[4] S. Mehmood, R. Amin, J. Mustafa, M. Hussain, F. S.

Alsubaei, and M. D. Zakaria,“Distributed Denial of Services

(DDoS) attack detection in SDN using Optimizer-equipped

CNN-MLP,” PloS one, vol. 20, no. 1, pp. e0312425,2025.

[5] J. A. Wass, ‘‘WEKA machine learning workbench,’’ Sci.

Comput., vol. 24, pp. 1–4, Jan. 2007.

[6] A. Ahmad, ‘‘Use of minitab statistical analysis software in

engineering technology,’’ in Proc. ASEE Annu. Conf. Expo.,

pp. 1–10,2019.

[7] L. Niu, ‘‘A review of the application of logistic regression in

educational research: Common issues, implications, and

suggestions,’’ Educ. Rev., vol. 72, no. 1, pp. 1–27, 2018.

[8] R. R. Bouckaert, ‘‘Bayesian network classifiers in weka for

version 3-5-7,’’ Artif. Intell. Tools, vol. 11, no. 3, pp. 369–

387, 2008.

[9] G. Kaur, and A. Chhabra, ‘‘Improved J48 classification

algorithm for the prediction of diabetes,’’ Int. J. Comput.

Appl., vol. 98, no. 22, pp. 13–17, Jul. 2014.

[10] J. P. G. Sterbenz, et al., ‘‘Redundancy, diversity, and

connectivity to achieve multilevel network resilience,

survivability, and disruption tolerance invited paper,’’

Telecommun. Syst., vol. 56, pp. 17–31, 2014. doi:

10.1007/s11235-013-9816-9.

[11] Khalid, Aimen, Gran Badshah, Nasir Ayub, Muhammad

Shiraz, and Mohamed Ghouse, "Software defect prediction

analysis using machine learning techniques,"

Sustainability,vol. 15, no. 6, pp. 5517,2023.

[12] Singh, Praman Deep, and Anuradha Chug, "Software defect

prediction analysis using machine learning algorithms," In

2017 7th international conference on cloud computing, data

science & engineering-confluence, IEEE,pp. 775-781, 2017.

[13] Prabha, C. Lakshmi, and N. Shivakumar, "Software defect

prediction using machine learning techniques," In 2020 4th

International conference on trends in electronics and

informatics (ICOEI)(48184), IEEE, 2020, pp. 728-733.

[14] Singh, Praman Deep, and Anuradha Chug, "Software defect

prediction analysis using machine learning algorithms." In

Model TP 90

Accuracy Precision Recall F1-score

Ensemble CNN 79.5 79.5 80 97.5

SPAM-XAI

Method

89.5 89.5 89 82

Hybrid CNN-

LSTM method

83.5 83.5 85 84.5

CNN with

Optimizer-

equipped

approach.

80 80 81 88.5

Proposed Adam

based hybrid CNN-

MLP model.

97 97 97.5 97.5

http://jtipublishing.com/jti

Volume 6 Issue 1, January – March 2025

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
http://jtipublishing.com/jti

2017 7th international conference on cloud computing, data

science & engineering-confluence, IEEE, 2017, pp. 775-781.

[15] Rivas, Pablo, Javier Orduz, Tonni Das Jui, Casimer

DeCusatis, and Bikram Khanal, "Quantum-enhanced

representation learning: A quanvolutional autoencoder

approach against ddos threats," Machine Learning and

Knowledge Extraction,vol. 6, no. 2, pp. 944-964,2024.

[16] Yang, Xingguang, Huiqun Yu, Guisheng Fan, and Kang

Yang, "DEJIT: a differential evolution algorithm for effort-

aware just-in-time software defect prediction," International

Journal of Software Engineering and Knowledge

Engineering,vol. 31, no. 03, pp. 289-310,2021.

[17] Khleel, Nasraldeen Alnor Adam, and Károly Nehéz, "A

novel approach for software defect prediction using CNN and

GRU based on SMOTE Tomek method," Journal of

Intelligent Information Systems,vol. 60, no. 3, pp. 673-

707,2023.

[18] Mehmood, Iqra, Sidra Shahid, Hameed Hussain, Inayat

Khan, Shafiq Ahmad, Shahid Rahman, Najeeb Ullah, and

Shamsul Huda, "A novel approach to improve software

defect prediction accuracy using machine learning," IEEE

Access,vol. 11, pp. 63579-63597,2023.

[19] J. Cai, J. Luo, S. Wang, and S. Yang, ‘‘Feature selection in

machine learning: A new perspective,’’ Neurocomputing,

vol. 300, pp. 70–79, Jul. 2018.

[20] K. P. Singh, N. Basant, and S. Gupta, ‘‘Support vector

machines in water quality management,’’ Analytica Chim.

Acta, vol. 703, no. 2, pp. 152–162, Oct. 2011.

[21] Software Defect Prediction Dataset link:

https://www.kaggle.com/datasets/semustafacevik/software-

defect-prediction

http://jtipublishing.com/jti

