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Abstract 

The practice of predicting software errors in quality assurance now experiences a significant advancement through AI automation. 

The system uses natural language processing together with data analytics and machine learning techniques to examine historical 

records in order to make defect identification. The existing defectidentification models struggle with various challenges that stem 

from noisy data and class imbalanced datasets and complex pattern recognition tasks because their performance deteriorates. In 

this research develop a new model Adaptive Moment Estimation based Convolutional Neural network –Multi Layer Perception 

model (Adam based CNN-MLP), for defect identification as it combines CNN features extraction power with adaptive MLP 

identification capabilities. The system extracts essential data points from unprocessed information while developing general skills 

through its ability to detect intricate patterns between software faults. The CNN segment first extracts spatial patterns from the 

data before the MLP component uses identification abilities to analyze high-level dependencies. The combination of AI advanced 

features creates an optimal solution which enables efficient and accurate scaling of software defect identification while expanding 

AI quality management capabilities in software engineering 

 

Keywords: Predictive software Defect Identification, Convolutional Neural Network, Multi-Layer Perceptron, hybrid 

Convolutional Neural Network and Multi-Layer Perceptron. 
 

Introduction 
Predictive Software Defect Identification system uses AI-

based Quality Engineering to resolve the testing constraints 

that exist in contemporary software development practices 

[1]. Standard quality assurance faces difficulties in meeting 

application complexity requirements and security standards 

because organizations now widely use cloud computing 

together with micro services and IoT technology along with 

Artificial Intelligence capabilities [2]. Current business needs 

more rapid product releases as well as real-time application 

monitoring to maintain competitiveness yet standard defect 

detection methods cannot meet these requirements [3]. AI-

based identification models which use machine learning and 

deep learning technology help identify defects in advance 

through the analysis of historical information and code 

structures with system activities [4]. The intelligent 

automation boosts product reliability through faster 

development times while ensuring top-quality software 

outcomes which makes predictive defect identification vital 

for software engineering [5].  

The testing processes that heavily depend on manual testing 

combined with scripted test cases commonly fail to detect 

advanced bugs before the development lifecycle reaches its 

latter phases [6-7]. The manual testing methods used by these 

systems become ineffective for processing extensive 

applications because they require excessive time and 

resources. Inaccurate identification emerge from models 

designed to detect defects because faulty historical data that 

lacks consistency or completeness becomes a problem for 

identification accuracy [8]. When AI models operate as black 

box systems it creates difficulties for developers to understand 

how identification were made so they become doubtful about 

system reliability [9]  

A more integrated method should be used to eliminate these 

system limitations. The accuracy of AI identificationdepends 

on enhancing the data quality utilized for training AI models 

thus requiring complete accurate and consistent defect data 

labels for better outcomes [10-12]. Hybrid automation 

solutions which unite AI-based systems and human testers 

solve interpretability problems because they enable testers to 

see how AI makes its identification. AI model efficiency 

requires continuous observation and repeated training to allow 

them to recognize emerging patterns and trends within the 

software development process [13-14]. AI-powered defect 

identification systems gain robustness together with reliability 

through the implementation of these strategies which leads to 
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transparent improvements in software quality management 

[15]. 

• Adam based CNN-MLP:The proposed Adam-

based CNN-MLP model enhances software defect 

identification by integrating CNN for effective feature 

extraction and MLP for robust classification. Unlike existing 

models, it addresses challenges such as high computational 

complexity, overfitting, and slow convergence. LDA 

preprocessing improves class separability and reduces 

redundant features, optimizing computational efficiency. The 

Adam optimizer dynamically adjusts learning rates, ensuring 

stable convergence and reducing overfitting. This approach 

enhances accuracy, robustness, and efficiency, making it a 

more effective solution for software defect identification. 

 

Literature Review  
Ahmed Abdu et al. [1] created Ensemble Convolutional 

Neural Network deep learning which serves as an approach 

for software defect identification. This research strives to 

develop a dependable approach for software defect 

identification within specific projects to aid engineers during 

resource management for high quality software delivery. 

Predictive results improve due to this method because it 

detects both numerical data patterns and semantic 

comparisons. The approach has limited effectiveness because 

semantic feature extractions using Word2Vec might not work 

reliably or accessibly in particular situations. The study by 

Mohd Mustaqueem et al. [2] developed the sampling, 

identification, and Analysis Model (SPAM) with Explainable 

Artificial Intelligence system as a hybrid deep learning 

framework to predict software defects with XAI approaches 

to improve performance visibility. The SPAM-XAI model 

provides transparent insights into how features relate to error 

status which leads to better understandable identification. The 

method enhances transparency together with raising 

identification accuracy. The non-linear models lead to harder 

interpretation and higher computational complexity serves as 

the main disadvantages. Andressa Borre et al. [3] developed 

hybrid Convolutional Neural Network (CNN)-Long Short-

Term Memory (LSTM). This method merges CNN with 

LSTM network for its operation. The method functions to 

anticipate electrical machine breakdowns and handles data-

related uncertainties effectively. High accuracy and Time-

Series data suitability stand out as key advantages of this 

method while its main drawback includes high computational 

complexity, Over fitting and needs extensive data quantities. 

The research by Sajid Mehmood et al. [4] presents a detection 

system for distributed denial of service attacks in Software-

Defined Networks (SDN) through optimizing a combination 

of Convolutional Neural Networks (CNN) and Multi-Layer 

Perceptron (MLP) with an optimizer-equipped approach. The 

research presents possible approaches for future SDN network 

security development. The usage advantages of this method 

include increased scalability as well as better detection 

precision. The main drawbacks of this approach involve 

complex computations and unclear model explanations. 

A.Challenges 

• Real-time deployment becomes complicated 

because the unified structure of CNN, LSTM, and attention 

mechanisms creates high computational complexity [1].   

• The model needs extensive labeled data for effective 

training but such resources might be scarce particularly when 

detecting faults [2].   

• Overfitting due to the large number of parameters in 

CNN and LSTM models, particularly with small datasets. [2].   

• Real-time detection could be affected by the Adam 

based CNN-MLPmodel and optimizer because they increase 

computational expenses. [3].   

• The detection system requires extensive labeled 

training data to function effectively yet such data might prove 

difficult to acquire for DDoS detection purposes [4].     

• The combination of software metrics complexity 

with the optimizer creates computational challenges that make 

model convergence difficult to handle. [5].     

• The complex CNN-MLP hybrid approach makes it 

challenging to determine precise defect identification reasons 

because of its limited interpretability capabilities [6].   

• The uneven distribution of defective and non-

defective instances within the data causes identification bias 

because of data imbalance.  [6].   

• The lack of interpretability in CNN and MLP models 

creates difficulties for software engineers to trust their 

identification because the models operate as black boxes [6]. 

PROPOSED METHODOLOGY FOR PREDICTIVE 

SOFTWARE DEFECT IDENTIFICATION WITH 

ADAPTIVE MOMENT ESTIMATION BASED CNN-

MLP MODEL 

This research proposes a predictive software defect 

identification model by utilizing anAdam based CNN-MLP 

approach, where the input is collected from a software defect 
identification 

dataset(https://www.kaggle.com/datasets/semustafacevik/sof

tware-defect-prediction) that includes software metrics such 

as lines of code, complexity measures, and other relevant 

features. The dataset requires Linear Discriminant Analysis 

(LDA) preprocessing before it can proceed. By employing 

LDA the model achieves better identification results because 

this method preserves class separability in reduced feature 

spaces. The Adam based CNN-MLPmodel receives 

preprocessed data for its software Defect Identification. The 

Adam based CNN-MLPmodel uses the best qualities of both 

its components to enhance software defect identification 

accuracy along with robustness performance. The model 

http://jtipublishing.com/jti
https://www.kaggle.com/datasets/semustafacevik/software-defect-prediction
https://www.kaggle.com/datasets/semustafacevik/software-defect-prediction


 

Volume 6 Issue 1, January – March 2025 

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 
http://jtipublishing.com/jti 

 

optimization process uses Adam as an optimization algorithm 

which adjusts individual parameter learning rates during 

training. Adam employs first and second gradient moments 

during training for stable convergence while boosting the 

efficiency of the overall process. The predictive software 

Defect Identification system utilizes Adaptive Moment 

Estimation based Adam based CNN-MLPmodel as shown in  

Fig. 1. Input from software defect identificationdataset. 

Preprocessing using linear discriminant analysis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Architecture for Predictive software Defect Identification with Adam based CNN-MLPmodel

 

A. Input Collection from Software Defect identification Dataset: 

The main dataset derives from Software Defect identification 

Dataset 

https://www.kaggle.com/datasets/semustafacevik/software-

defect-identification and contains static code attributes alongside 

maintainability index, cyclomatic complexity, lines of code and 

code chum features. These performance indicators present 

information about defect-prone modules in the gathered software 

project data. Working and faulty outcomes in the data help the 

model identify patterns that relate to software quality levels. 

A = ∑ ⬚n
a=1 Sa,                                                                          

(1) 

Where, A denotes the dataset, Sa denotes the number of 

metrics present in the dataset with values ranges from 1 to n. 

B. Preprocessing Using linear discriminant analysis: 

LDA is used as a preprocessing step in software defect 

identification to reduce dimensionality while preserving class 

separability. The dataset includes features like lines of code, 

complexity measures, and coupling metrics, which may 

introduce redundancy. LDA projects data onto a lower-

dimensional space to maximize the distinction between defective 

and non-defective components, unlike PCA, which focuses on 

variance. This enhances feature representation, improves 

generalization, and accelerates convergence when applied before 

training the CNN-MLP model, ultimately boosting defect 

identification accuracy. 

                                                      XLDA = WTSa
 ∗                              (2) 

C. Hybrid Convolutional -Multi layer model for software defect 

identification: 

The preprocessed output forms the input for the Adam based 

CNN-MLPmodel for software defect identification.The Adam 

based CNN-MLPmodel combines deep learning features of 

CNN with MLP’s classification through a unified framework to 

achieve higher predictive accuracies. Data patterns become 

detectable through CNN because the framework uses 

convolutional filters together with ReLU activations and pooling 

layers to purify critical information within the data. The 

processed features move through MLP which enables effective 

defect classification to reach better predictive modeling 

performance. The main function of CNNs involves spatial data 

processing yet they need a classifier to generate final 

identification. MLP serves as the classification decision engine 

because it utilizes fully connected layers to process extracted 

features. A one-dimensional vector derived from the CNN 

output moves to the MLP before it utilizes Sigmoid or SoftMax 

activation functions to calculate defect probabilities. The 

combination of CNN and MLP within this hybrid model 

strengthens defect identification software by extracting effective 

features before performing exact classification operations. Adam 

based CNN-MLPmodel receives its input through combined 

output data from both CNN and MLP. The equation for Adam 

based CNN-MLPmodel is calculated by using the inputs are, 

 XCNN = ReLU(Conv 2D(XLDA) + BCNN)                            (3) 

Xflattened = Flatten( XCNN),                                               (4) 

XMLP = σ(W2. MLP(Xflattened) + b2),                                (5) 

The output equation be, 

HCNN−MLP = concat( XCNN,XMLP)                                       (6) 

Predictive software Defect Identification with Adaptive Moment  

Estimation based CNN-MLP model 

Adaptive 

moment 

estimation. 

http://jtipublishing.com/jti
https://www.kaggle.com/datasets/semustafacevik/software-defect-prediction
https://www.kaggle.com/datasets/semustafacevik/software-defect-prediction


 

Volume 6 Issue 1, January – March 2025 

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal 
http://jtipublishing.com/jti 

 

The final output HCNN−MLP represents the probability of a 

software component being defective or not. Fig. 2 illustrates the 

Architecture for the proposedAdam based CNN-MLP model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Architecture for the proposed Adam based CNN-MLP 

model.IV. Proposed adaptive moment Estimation 

Algorithm: 
The Adam algorithm optimizes the CNN-MLP model by 

dynamically tuning the weights and biases during training. These 

functions allow the model to perform updates that merge 

Momentum-based Gradient Descent with RMSprop advantages. 

The Adam optimizer serves as an effective tool for training deep 

networks especially when used with the Adam based CNN-

MLPmodel for software defect identification. 

A. parameters initialization 

The model parameters consisting of weights (W) and biases (b) 

receive initial values to extract meaningful patterns from the 

dataset for better predictive accuracy. Adam optimizer manages 

two fundamental moment estimates through mt that follows an 

exponential weighted average of past gradients and vt that tracks 

an exponential weighted average of past squared gradients to 

control update scaling. Adam needs a learning rate (η) to control 

step size together with decay rates (β1 and β2) to balance past 

contributions and a small constant (ϵ) to prevent division by zero 

for achieving stable and efficient parameter updates.  

B. Gradient of loss function 

The calculation of gradient for the loss function occurs with 

respect to model parameters during every iteration. The loss 

function determines model defect identification accuracy while its 

gradient indicates the parameter adjustment direction. 

gt = ∇Loss(W, b)                                                                 (7) 

Where gtrepresents the gradient at iteration t, this gradient 

indicates whether parameters should be increased or decreased 

to minimize the loss. 
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C. First Moment Estimate 

Adam implements the first moment estimate to build a 

history of gradient accumulation which stabilizes its update 

functions. Adam performs calculations using smoothed gradient 

values obtained through an exponential moving average instead 

of raw gradient data, 

mt = β1mt−1 + (1 − β1)gt,                                                  (8) 

Where, 

The term mt helps smooth out noisy updates, preventing 

sudden drastic changes in weights. 

The hyper parameter β
1
determines how much of the past 

gradients contribute to the update. 

D. Second Moment Estimate 

Adam updates differ from standard gradient descent because 

it tracks both gradient magnitude and its time-dependent second 

moment calculation. The method controls big update variations 

to keep learning operations stable. 

                                   vt = β2vt−1 + (1 − β2)g2
t
,                   (9) 

Where, 

▪ vt be the updated second moment estimation, 

▪ β
2
 controls how much past squared gradients influence 

the current update, 

▪ g2
t
 represents the square of current gradient. 

E. Bias correction for first and second moments 

The starting values for first and second moment estimates are 

zero at training onset. The early updating values exhibit zero bias 

because the initial estimates start at zero which leads to improper 

update calculations. The implementation of bias correction 

produces unbiased estimates that fix the initial issue with the 

moments. 

mt̂ =
mt

1−β1
t ,    vt̂ =

vt

1−β2
t ,                                                       (10) 

Adam does not rely on overly small or biased moment 

estimates in the initial stages, leading to more stable training. 

F. Model parameters using Adam update rule 

The model receives its updates based on the unbiased 

moment estimates we have obtained. The learning rate falls 

under dynamic adjustment per parameter during this step which 

enhances the training process by avoiding overcorrection. 

W = W −
ηmt̂

√vt̂+ε
,  b = b −

ηmt̂

√vt̂+ε
                                          (11) 

Where, 

o W and b are the weights and biases being optimized, 

o Η be the learning rate, 

o mt̂ and vt̂ are the corrected moment estimates obtained 

in the previous step. 

G. Check Stopping Criteria 

Adam executes multiple optimization steps until it fulfils one 

of its predefined stopping criteria. The algorithm terminates after 

completing the predefined training epoch count which represents 

the first termination condition. The model stops training when 

loss convergence occurs because the changes in the loss function 

become minimal which indicates the model has achieved its 

optimal solution. The training process stops when validation 

accuracy remains unchanged across multiple iterations in order 

to avoid Overfitting. 

H. Output the Optimized model 

After completing all optimization steps, the best set of 

parameters (weights and biases) are obtained as, 

W∗, b∗,                                                                             (12) 

Where,  

✔ W∗, b∗ are the final optimized weight and bias value. 

These optimized parameters are now used in Adam based 

CNN-MLPmodel for software defect identification, ensuring that 

the model generalizes well to new data and achieves high 

accuracy. 

 

TABLE I 

 PSEUDOCODE FOR THE ADAM ALGORITHM: 

S.No Pseudocode for the Adam Algorithm 

1 Initialize parameters: Set weights W, biases b, first 

moment mt =0, second moment vt=0, learning rate η, 

and hyperparameters  β
1

, β2,ϵ. 

2 Compute gradients: Calculate the gradient of the loss 

function, gt = ∇Loss(W, b). 

3 Update first moment estimate: Compute 

exponentially weighted moving average of gradients, 

mt = β1mt−1 + (1 − β1)gt. 

4 Update second moment estimate: Compute 

exponentially weighted moving average of squared 

gradients, vt = β2vt−1 + (1 − β2)g2
t
. 

5 Bias correction: Adjust moment estimates to correct 

initialization bias, mt̂ =
mt

1−β1
t ,    vt̂ =

vt

1−β2
t . 

6 Parameter update: Update weights and biases using 

the Adam update rule, W = W −
ηmt̂

√vt̂+ε
,  b = b −

ηmt̂

√vt̂+ε
.  

7 Stopping criteria: Repeat 4.2 to 4.6 until convergence 

is achieved. 

8 Output optimized parameters: Return the final 

updated weights W and biases b that minimize the loss 

function. 

 

Result and discussion  
 

AnAdam based CNN-MLPmodel for predicting software defects 

developed in this study. By comparing its performance to that of 

other top models, its effectiveness is evaluated. 
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A. Experimental Setup 

The software defect identification Experiment is carried out 

using a Python script (version 3.7.6) on a Windows 10 OS with 

8GB of RAM. 

B. Dataset description: 

Software Defect identification Dataset description [21]: 

The Kaggle Software Defect identification Dataset enables 

evaluations through software module measurement data 

composed of lines of code (LOC), cyclomatic complexity, depth 

of inheritance tree (DIT), coupling between objects (CBO) and 

other structural elements that determine defect sensitivity. The 

model contains two possible outcomes which are defective (1) 

and non-defective (0) thus making it appropriate for binary 

classification tasks. The dataset covers several software versions 

which enable researchers to study model generalization 

capabilities. The identification accuracy suffers due to the class 

imbalance problem that exists when defective modules occur 

less frequently than non-defective modules. The data collection 

serves as a fundamental resource for developing early defect 

detection systems that improve software quality together with 

reliability. 

C. Performance Analysis based on TP: 

Fig. 3 demonstrates the effectiveness of the Adam based 

CNN-MLPmodel in software defect identification by analyzing its 

performance across varying epochs (100, 200, 300, 400, and 

500) while maintaining a TP of 90. In Fig. 3a, it is evident that 

the accuracy for these epochs attained remarkable levels: 79.5%, 

89.5%, 83.5%, 80%, and 97%. Similarly, Fig. 3b indicates that 

the Adam based CNN-MLPmodel reached its higher precision 

scores of 79.5%, 89.5%, 83.5%, 80%, and 97% also 

corresponding to the same TP of 90. Additionally, Fig. 3c 

presents findings for the same epochs, showcasing the higher 

recall rates of 80%, 89%, 85%, 81%, and 97.5% at a TP of 90. 

Lastly, Fig. 3d reveals the f1-score results for the Adam based 

CNN-MLP model at a TP of 90, highlighting peak value of 

85.3%, 90.6%, 89.9%, 89.5%, and 99.1%. 

 

  

a) Accuracy b) Precision 

  
c) Recall d) F1-score 

Fig. 3. Performance analysis based on TP a) Accuracy, b) Precision, c) Recall, and d) F1-score.
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D. Comparative Methods 

To emphasize the accomplishments of the Adam based CNN-

MLPmodels, a comparison was done. This investigation 

employed a number of techniques, such as Ensemble CNN [1], 

SPAM-XAI method [2], hybrid CNN-LSTM model [3], CNN 

with optimizer –equipped approach [4]. 

 

1) Comparative analysis based in TP 

The Adam based CNN-MLP model performed better than the 

CNN with optimizer –equipped model at predicting software 

defects at a TP of 90 through an improvement of 17.52% which 

reached a peak accuracy of 97% as illustrated in fig. 4a. 

Fig. 4b demonstrates how the Adam based CNN-MLP 

provides superior forecasting capabilities for software defects  

 

than the CNN with optimizer –equipped model while reaching a 

97% precision level at a TP of 90. This leads to a 17.52% 

performance advantage. 

The Adam based CNN-MLP model surpassed the CNN with 

optimizer –equipped model by 16.92% in its software defect 

identification while attaining a maximum recall of 97.5% at a TP 

of 90. 

Fig. 4d shows that the Adam based CNN-MLP model 

outperforms the DE model for software defect identification 

through an f1-score of 97.5% at a TP of 90 while providing 

15.89% more performance than the CNN with optimizer –

equipped model. 

 

 

 

  

a) Accuracy b) Precision 

  

c) Recall F1-score 

Fig. 4.Comparative Analysis based on TP a) Accuracy, Precision, c) Recall, and  d) F1-score. 

E. Comparative discussion table during TP 90 

Existing software defect identification models, such as 

Ensemble CNN, SPAM-XAI, Hybrid CNN-LSTM, and CNN 

with Optimizers, face challenges like high computational 

complexity, feature extraction difficulties, overfitting, and slow 

convergence. Ensemble CNN improves accuracy but increases 

complexity, SPAM-XAI enhances interpretability at the cost of 

performance, Hybrid CNN-LSTM captures sequential 

dependencies but struggles with vanishing gradients, and CNN 
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with Optimizers lacks adaptability in learning rate adjustments. 

The proposed Adam-based hybrid CNN-MLP model addresses 

these issues by combining CNN for feature extraction and MLP 

for classification, ensuring efficient learning and decision-

making. The comparative discussion table based on TP 90 can 

be found in Table II. 

 

TABLE II 

 

COMPARATIVE DISCUSSION TABLE FOR TP 90. 

Conclusion 
The proposed Adam based hybrid CNN-MLP model establishes 

an AI-based Quality engineering system which makes exact 

decisions about software defect identification. The Adam based 

hybrid CNN-MLP Framework begins its process by improving 

data quality through noise reduction. The Hybrid CNN-MLP 

model receives the preprocessed dataset for processing at the 

same time it utilizes an adaptive learning rate mechanism which 

speeds up convergence and boosts model stability during 

training sessions. The research addresses model limitations by 

providing exact defect monitoring and better software quality 

through its solution.  
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