
Journal of Technological Innovations

Est. 2020

Volume 5 Issue 4, October - December 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
http://jtipublishing.com/jti

Designing a Robust Page Object Model (POM) for

Cross-Browser and Cross-Platform Testing

Asha Rani Rajendran Nair Chandrika

Email: ashaadarsh2010@gmail.com

Abstract

In the dynamic landscape of web and mobile application testing, ensuring that test automation frameworks are scalable,

maintainable, and capable of supporting diverse environments is a critical challenge. The Page Object Model (POM) has

emerged as a highly effective design pattern for addressing these concerns. This article explores advanced strategies and

best practices for designing a POM that not only adheres to the principles of maintainability and scalability but also

supports cross-browser and cross-platform testing. The strategies outlined here aim to ensure efficient, reliable, and

streamlined test execution across varying environments. This approach involves leveraging a variety of techniques such as

modularization, abstraction, parallel execution, and cloud-based tools. By following these methodologies, testing teams can

maximize test coverage and performance, ultimately delivering high-quality software with confidence.

Keywords: Page Object Model (POM), Test Automation, Cross-Browser Testing, TestNG, Selenium WebDriver, Factory

Design Pattern, Configuration Files, Dynamic Test Environments, Locator Strategies, Parallel Test Execution, Cross-Platform

Testing, BrowserStack, Sauce Labs, Mobile Testing, Test Framework Scalability, Test Maintenance, Automation Best

Practices, Web Automation Framework.

Introduction

In modern software development, test automation plays a

pivotal role in ensuring high-quality releases. However,

with the growing need to test applications across various

browsers and platforms, it is vital that test automation

frameworks are designed to be adaptable and resilient. The

Page Object Model (POM) design pattern has long been a

popular choice for structuring test automation code. This

pattern focuses on separating the test scripts from the user

interface (UI) elements and behaviors, creating an

abstraction layer that simplifies both writing and

maintaining tests [1].

While POM provides significant advantages in organizing

code, it also needs to evolve to handle the increasing

complexity of testing across multiple browsers, devices,

and platforms. Traditional POM may not suffice when

facing these challenges. As such, a more sophisticated

approach to the POM is required—one that incorporates

principles of scalability, flexibility, and reusability across

different environments.

This article delves into how to design a robust and scalable

Page Object Model (POM) for cross-browser and cross-

platform testing. By using a series of best practices and

advanced strategies, it is possible to build a framework

that adapts to various devices, browsers, and operating

systems while keeping the automation code clean and

maintainable.

Base Page Class for Shared Functionality

A well-structured Page Object Model (POM) relies heavily

on the concept of a Base Page Class. This class acts as a

central hub, consolidating shared methods, properties, and

utilities that are commonly used across various page

objects in the framework. By placing these functionalities

in a single class, you eliminate redundant code and

promote consistency in how page objects interact with the

browser and web elements. This centralized approach not

only simplifies the maintenance of the test automation

code but also enhances scalability and flexibility when

expanding the framework [2].

The BasePage class is designed to provide essential,

reusable functionality for all page objects. It consists of

three main components:

• WebDriver: This is used to interact with the browser,

enabling actions like navigating to pages, clicking

buttons, filling out forms, and retrieving element data.

http://jtipublishing.com/jti

Volume 5 Issue 4, October - December 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
http://jtipublishing.com/jti

• WebDriverWait: This utility helps the script to wait

for specific conditions (such as element visibility)

before interacting with web elements. This ensures

synchronization and avoids issues where elements are

not ready for interaction.

• Base Methods: Methods like navigateTo and

waitForElement simplify common tasks across

multiple page objects. navigateTo is responsible for

navigating to a given URL, while waitForElement

ensures that an element is visible before interacting

with it.

The constructor initializes these components, ensuring

they are available for any page class that extends

BasePage. By centralizing repetitive actions such as

navigation and element waiting in this base class, you

reduce code duplication and ensure a consistent approach

to interacting with web elements, ultimately streamlining

test creation and maintenance [3].

Figure 1: Example BasePage Implementation

Abstracting Page Object Creation with a Factory

Method

A factory method is a design pattern that provides a

streamlined way to dynamically create page objects based

on specific contexts such as browser type, platform, or

device. This pattern ensures flexibility and scalability in

test automation by abstracting page object creation,

enabling the framework to adapt seamlessly to varying

environments [4].

Benefits of the Factory Method

• Separation of Concerns: Test scripts are simplified

as the logic for creating page objects is moved to a

centralized factory class.

• Extensibility: Supporting new platforms or browsers

only requires modifying the factory logic, without

altering existing tests.

• Dynamic Instantiation: Page objects are created

dynamically at runtime based on configuration

settings like platform or browser type, promoting

adaptability.

Code Implementation

The PageFactory class encapsulates the logic for

instantiating platform-specific page objects. The getPage

method dynamically creates the appropriate subclass of

BasePage (such as MobileLoginPage, TabletLoginPage, or

DesktopLoginPage) based on the provided platform

parameter:

Figure 2: Example Factory Method Implementation

Leveraging Abstract Classes or Interfaces for

Consistency

To ensure all page objects follow a consistent structure,

using abstract classes or interfaces is a best practice. These

constructs establish a contract that all implementing

classes must adhere to, ensuring uniformity and better

reusability. This approach simplifies test automation,

especially when dealing with platform-specific behaviors

or layouts [5].

Advantages of Using Abstract Classes or Interfaces:

• Standardizes Method Signatures: Guarantees all

page objects implement the same set of methods,

ensuring consistency across different platforms.

• Encapsulates Platform-Specific Behavior: Allows

flexibility to define platform-specific implementations

while maintaining a common structure for all page

objects.

• Enhances Maintainability: Simplifies updates since

shared behavior is centralized in the interface or

abstract class.

http://jtipublishing.com/jti

Volume 5 Issue 4, October - December 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
http://jtipublishing.com/jti

Figure 3: Page Interface

Figure 4: Platform specific Page Implementation

Figure 5:Factory Method Implementation

Figure 6:Testcase Example

Using Configuration Files for Dynamic Test

Environments

A configuration file centralizes environment-specific

settings, such as browser types, platform names, and

application URLs, making the test framework highly

adaptable. By externalizing these details, you can easily

switch between environments like staging, production, or

testing without modifying the underlying codebase. This

approach promotes maintainability and eliminates

hardcoding of sensitive information [6].

Advantages of Using Configuration Files:

• Avoids Hardcoding: URLs, browsers, and other

environment-specific details are externalized for

flexibility.

• Streamlined Environment Switching: Makes

switching between test environments seamless.

• Enhances Maintainability: Updates to the

environment require changes only in the configuration

file, not in the code.

Figure 7: Configuration File

Figure 8: Load Configuration

Robust Locator Strategies for Cross-Browser Testing

A robust locator strategy is essential for ensuring the

reliability of tests, especially when working across

multiple browsers and platforms. By choosing the right

locators, your test automation code can remain adaptable

even as the application evolves. Best practices include

using unique identifiers such as id, name, or data-test

attributes, which are less likely to change and provide a

stable way to locate elements. It is also critical to avoid

brittle locators like absolute XPaths that can easily break if

the page structure changes. To handle elements that differ

based on the platform (mobile, tablet, desktop), dynamic

locators can be employed using conditional logic [7].

Figure 9: Robust Locator Strategy

Figure 10: Multiplatform dynamic locator

http://jtipublishing.com/jti

Volume 5 Issue 4, October - December 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
http://jtipublishing.com/jti

Parallel Test Execution for Optimizing Test Time

Parallel test execution is a powerful strategy for

optimizing test time, enabling multiple tests to run

concurrently across different platforms and browsers. This

approach significantly reduces overall execution time,

particularly when covering various devices, operating

systems, and browser combinations. By implementing

parallel execution, your test suite can run tests

simultaneously, enhancing efficiency and accelerating

feedback. The key benefits include faster feedback with

quicker bug detection, optimized resource utilization, and

scalability to handle more complex tests as your system

evolves [8].

Figure 11: Parallel Execution using TestNG

In this configuration, TestNG runs tests for Chrome and

Firefox browsers in parallel, utilizing multiple threads (in

this case, up to 4 threads). This setup allows you to

efficiently test across different environments and get faster

results while optimizing your testing resources.

Using Cross-Browser Testing Tools for Multiple

Environments

Cross-browser testing tools like Selenium Grid,

BrowserStack, and Sauce Labs are essential for ensuring

compatibility across different platforms, browsers, and

devices. These tools allow for parallel test execution on

real browsers and devices, without requiring the

maintenance of physical infrastructure. They help

streamline the testing process by providing access to

multiple browsers, operating systems, and devices from a

centralized, cloud-based platform.

Figure 12: Remote Webdriver Instance with Browserstack

In this code, DesiredCapabilities are used to define the

browser, browser version, and operating system version. A

RemoteWebDriver is initialized with these capabilities,

which connects to BrowserStack's cloud server to run the

test on a remote browser instance. This setup ensures that

tests are executed across different platforms without the

need to configure physical machines or environments,

making the testing process more efficient and scalable.

Conclusion

• Page Object Model (POM) Design: A robust POM

ensures maintainable, scalable, and flexible test

automation code across multiple browsers and

platforms.

• Base Page Class: Centralizes shared functionality,

reducing redundancy and improving maintainability.

• Factory Method: Dynamically creates page objects

based on the environment, promoting flexibility and

scalability.

• Abstract Classes or Interfaces: Enforce consistency

and structure across all page objects, making the

framework extensible and easy to maintain.

• Configuration Files: Externalize environment-

specific settings, simplifying environment switching

and improving test maintainability.

• Locator Strategies: Use reliable and platform-

independent locators, ensuring consistent element

identification across different browsers and platforms.

• Parallel Test Execution: Reduces test execution time

by running tests concurrently, enabling faster feedback

and better resource optimization.

• Cloud-based Cross-Browser Testing Tools:

Leverage tools like Selenium Grid, BrowserStack, and

Sauce Labs to access a wide range of browsers and

devices without needing local infrastructure.

• Scalable Framework: The strategies outlined allow

for the seamless addition of new browsers, devices, or

platforms, ensuring long-term sustainability as your

application grows.

• Overall Goal: By implementing these practices,

testing teams can build adaptable frameworks that

provide high-quality, reliable test results across

diverse environments, ultimately ensuring the

application's robustness and performance.

REFERENCES

[1] https://saucelabs.com/resources/blog/getting-started-

with-cross-platform-testing

http://jtipublishing.com/jti

Volume 5 Issue 4, October - December 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal
http://jtipublishing.com/jti

[2] https://www.softwaretestinghelp.com/testng-example-

to-create-testng-xml/

[3] https://www.toolsqa.com/selenium-webdriver/page-

object-model/

[4] https://www.guru99.com/testng-execute-multiple-test-

suites.html

[5] https://www.softwaretestinghelp.com/automate-web-

app-on-chrome-browser/

[6] https://www.selenium.dev/documentation/test_practic

es/encouraged/page_object_models/

[7] https://www.softwaretestingmaterial.com/page-object-

model/#Page-Object-Model-Design-Pattern

[8] https://www.browserstack.com/guide/design-patterns-

in-selenium

http://jtipublishing.com/jti
https://www.browserstack.com/guide/design-patterns-in-selenium
https://www.browserstack.com/guide/design-patterns-in-selenium

