
Journal of Technological Innovations

Est. 2020

Volume 5 Issue 3, July -September 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Building Secure and Scalable Serverless Applications

on AWS

Prathyusha Kosuru

Email: prathyushakosuru308@gmail.com

Abstract

Implementing serverless solutions in AWS helps in building highly available and efficient applications. Using the API Gateway,

DynamoDB, and AWS Lambda, the applications can be made to scale and exhibit high availability. This paper provides various

aspects of security and scalability in serverless computing and ways through which key AWS services can help make serverless

applications the best (Diagboya, 2021).

Keywords: Serverless architecture, AWS Lambda, AWS API Gateway, DynamoDB scalability, Serverless security

Introduction

Serverless computing on AWS is a solution that enables

developers to create applications that are elastic in nature. AWS

takes care of the actual hardware and software, which makes it

possible for the developers to concentrate on coding and creating

features. Notable AWS services in serverless computing are

AWS Lambda, API Gateway, DynamoDB among others, and are

instrumental in creating effective serverless applications

(Kokkinos et al., 2013).

Introduction to Serverless Architectures on AWS

 AWS Lambda is a compute service that gives you the ability to

run code without having to manage an infrastructure of servers.

Lambda functions run on triggers such as APIs, changes in

databases, which trigger the function to execute and also scale

automatically as much as is required.

Security: Below are some measures that should be followed in

order to enhance Lambda function security:

IAM Roles and Policies: This is done to ensure that the IAM

roles assigned to Lambda functions have the least privilege

required to access other

Aws resources. IAM policies should therefore be reviewed and

updated frequently.

Environment Variables: Keep API keys, database credentials and

similar information in encrypted environment variables instead

of plain text files. For this, use either AWS Secrets Manager or

AWS Systems Manager Parameter Store.

- VPC Integration: In the case of Lambda function accessing

resources in the Virtual Private Cloud (VPC), then VPC

connectivity should be made secure (Mazinanian et al., 2017).

AWS Lambda: Core Concepts and Security

AWS Lambda functions are always scalable to the traffic coming

to the function. However, to optimize performance and manage

scaling effectively:

Concurrency Limits: Set constraints on maximum numbers of

concurrently running functions. Set reserved concurrency for the

critical functions to avoid inadequate resources for such

functions.

Cold Starts: Reduce the cold start latency issue by enabling

provisioned concurrency for functions with deterministic

requirements. Often call warm up functions to limit the result of

cold start.

Monitoring and Alerts: Monitor Lambda metrics through AWS

CloudWatch for factors like total invocations and average

duration. Set up alarms for getting performance problems if any

and take necessary actions on them (Niranjanamurthy et al.,

2014).

AWS API Gateway serves as a way to define the entry point to

your serverless application while offering scalability and

security features. Key security practices include:

Authorization and Authentication: Use AWS IAM or custom

forms of authorization schemes in order to perform

authorization. Deploy Amazon Cognito for user authentication

to your APIs and provide secure access to your applications.

http://jtipublishing.com/jti

Volume 5 Issue 3, July -September 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Rate Limiting and Throttling: Handle usage plans and limiting

options in API Gateway to prevent the misuse of your APIs and

provide equal opportunities for utilizing resources.

Data Encryption: HTTPS can be used to encrypt data in transit

from clients to the API Gateway. Allow the integration of API

Gateway logs into AWS KMS for encrypting data stored at the

endpoint (Rajan, 2018).

Scaling AWS Lambda Functions

Scaling AWS Lambda functions permits changes in the number

of function instances that run due to changes in workload

without requiring manual intervention. AWS Lambda has no

infrastructure, means that it provides fully managed services

hence it will only require scalability of the request that comes in.

Lambda’s scalability primarily works by not needing resourcing

upfront. AWS handles the infrastructure and providers so

Lambda automatically scales for applications that have varying

traffic. When a function is invoked, AWS assigns the required

resources for executing the function, and it scales out if multiple

events trigger a specific function.

There are some constraints to scaling like Concurrency limits

which define how many of the Lambda functions can be

executed at once. However, these limits are indeed customizable

within the AWS service depending on the use case and the AWS

account. AWS also provides throttling features that can be used

to handle traffic irregularities and prevent issues with the

availability of resources. Overall, AWS Lambda with automatic

scaling aspects makes it easy for developers to deal with

unpredictable workloads while offering them the benefits of cost

optimization and liberating them from infrastructure

management tasks.

AWS DynamoDB: NoSQL database service

AWS DynamoDB refers to the hosted NoSQL database service

that is designed to be used with serverless computing. Key

considerations for using DynamoDB effectively include:

Data Modeling: Implement optimal structures that enhance

query operations. Employ indexing and partitioning of

DynamoDB to support big data and improved throughput.

Provisioned vs. On-Demand Capacity: Select the provisioned

or on-demand capacity modes depending on the type of

workload your application produces. Decide on Auto-Scaling to

allow for the automatic adjustment of the provisioned capacity.

Security: Even further, incorporate IAM policies and

DynamoDB features such as provisioned throughputs, number

of read and write capacity units, let alone encryption, to put in

place appropriate access control (Sbarski & Kroonenburg, 2017).

Managing Traffic with API Gateway

To control and further direct the traffic being received, AWS API

Gateway should be embraced in your serverless engagements.

Effective traffic management involves:

API Throttling: The last measures should be rate limiting and

throttling policies that can help to set limitations for the number

of incoming requests and actions against misuse. Integrated with

usage plans and quotas, API Gateway helps to set the rate of

requests and protect backend services from excessive loads.

Caching: Caching with API Gateway: use responses to cache at

the edge to minimize latency and enhance performance. It is

recommended to set up cache parameters so that the benefits of

caching have value and data is not outdated.

Request Validation: Allow the request validation so that the

incoming requests meet the expected structures and parameters.

This is important in making sure that only correctly constructed

requests are passed to the back end of your application.

Custom Domain Names: API Gateway offers the ability to

create custom domain names to have a branded API endpoint and

control the incoming API traffic (Siriwardena & Siriwardena,

2020).

Data Security in DynamoDB

Ensuring data security in DynamoDB involves implementing

multiple layers of protection:

Encryption: For the security of data, DynamoDB employs the

use of AWS Key Management Service (KMS) to encrypt data at

the server end. This has several advantages when it comes to

approaching the issue of managing the encryption keys. If this is

enabled, your data will be protected from being accessed and

utilized by different parties without your permission.

Access Control: Use IAM policies and identify specific

DynamoDB tables as resources and grant package level

permissions. Specify permissions down to the specific levels to

control read, write or update according to the user or the service

level.

Network Security: Reduce DynamoDB exposure by setting up

VPC endpoints which ensures that DynamoDB is only

accessible through the VPC, not the public internet.

4. Backup and Restore: The need to backup data is another

fundamental operation that needs to be performed regularly with

the use of DynamoDB backup features.

Optimizing DynamoDB for Scalability

Optimizing DynamoDB involves configuring it to handle

varying workloads efficiently:

http://jtipublishing.com/jti

Volume 5 Issue 3, July -September 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Capacity Modes: Decision based on the predictability of the

workload to either be provisioned or on demand. Provisioned

mode enables you to define read and write throughput, while on-

demand mode scales based on the number of requests.

Auto Scaling: Try to use DynamoDB auto-scaling to increase or

decrease the capacity depending on the traffic. Set the policies

for scaling to ensure that you keep getting the best out of your

functions while charging a reasonable amount of money for this.

Indexes: Take advantage of Global Secondary Indexes (GSIs)

and Local Secondary Indexes (LSIs) to improve the speed of

your query. Choose indexes to fit your business requirements,

which means finding the right trade-off between frequent read

and write activities and costs.

Data Modeling: This includes setting flexible data models that

will rarely or never require joining and instead, rely on the

available partitioning and indexing service of DynamoDB

(Diagboya, 2021).

Integrating Lambda and DynamoDB

Integrating AWS Lambda with DynamoDB allows for event-

driven data processing:

Triggers: Implement Lambda function invocation by using

DynamoDB Streams to capture modifications in DynamoDB

tables. The overall integration allows processing real-time data

change events and provides automated workflows based on

modifications.

Direct Access: Lambda functions can also directly integrate with

DynamoDB through the AWS SDK. Check that the Lambda

functions have the proper IAM role with access to the

DynamoDB tables.

Error Handling: Use effective error handling and retry

mechanisms when working with Lambda functions in cases

where DynamoDB operations are not successful (Kokkinos et

al., 2013).

Monitoring and Logging in Serverless

Architectures

Effective monitoring and logging are critical for maintaining the

health and performance of serverless applications:

CloudWatch Metrics: Utilize AWS CloudWatch to monitor

metrics of Lambda functions, API Gateway and DynamoDB.

Information related to invocation counts, error rates and latency

gives an understanding of the application’s performance.

CloudWatch Logs: Turn on logs for Lambda functions and API

Gateway to capture execution logs of Lambda function

invocations. Examine the log files in order to identify problems,

monitor results, and perform API review.

AWS X-Ray: AWS X-Ray is a useful tool for tracing and

debugging serverless applications. This tool maps the flow of the

request in the application and allows the definition of the

problems and errors that exist in it.

Alarming and Notifications: Enable CloudWatch Alarms to

specify values for the metrics and auto-notification of certain

events or conditions. Handle all application problems through

acknowledgement in real-time (Mazinanian et al., 2017).

Error Handling and Retry Mechanisms in

Lambda

With AWS Lambda, error handling and retry are crucial to the

stability and efficiency of Lambda functions. Error management

helps to ensure that serverless applications do not fail and if they

do, they are able to fail in a graceful manner.

Built-in Retry Mechanisms: AWS Lambda also supports retries

for asynchronous invocation out of the box, which is a very

helpful feature. If a function cannot be invoked when it is

executed asynchronously (for example, in S3 event

notifications), AWS Lambda will automatically try to execute

the function twice with exponential back off. This retry logic is

useful for addressing such transient conditions without frets.

Custom Error Handling: For individual exceptions or business

logic failures, implement your custom error handling within

Lambda functions. Implement try-catch blocks to handle errors

and exceptions, log them for effective debugging and handle

necessary processes for recovering from the errors. This

approach enables decisions that are more precise in terms of

what to communicate and what to conceal from the user

regarding errors.

Dead Letter Queues (DLQs): For the asynchronous

communication, DLQ should be set up to handle the events that

could not be handled even in the retry attempts. Messages,

queues (for example, SQS queues or SNS topics) let you peek at

failed events, troubleshoot, and reprocess if needed. Make sure

all your Lambda functions are properly configured to utilize

DLQs to enhance fault tolerance.

Retries for Synchronous Invocations: When the service

invocation is expected to occur synchronously (such as, through

API Gateway), include retry logic in the client application, or

use Step Functions to handle retries and errors, locally. When

implementing retries, it is wise to apply exponential back-off

strategies so as not to overload other services.

Monitoring and Alerts: Create AWS CloudWatch Alarms to

track error metrics and trigger alert notifications for problems.

Another feature of AWS is CloudWatch Logs, where it will be

useful to study detailed error logs for timely diagnosis and

correction of errors (Niranjanamurthy et al., 2014).

http://jtipublishing.com/jti

Volume 5 Issue 3, July -September 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Cost Management and Optimization in Serverless

Environments

Costs can easily add up in serverless systems, proper cost control

is important to avoid unnecessary usage whilst keeping up with

performance. Efficient resource management and control is part

of the activities that need to be enhanced in the case of a firm

when it comes to issues of cost optimization.

Monitor and Analyze Costs: For tracking the usage of Lambda

functions and their costs, make use of Cost Explorer and Cloud

Watch. Analyze costs at the service level, geographic area, and

resource to define potential opportunities for cost reduction.

Perform constant analysis of cost reports with a view of making

constructive changes to resource utilization.

Optimize Lambda Execution Time: Ensure that the lambda

functions themselves are written without long sequences of code

to lower execution time. Owing to better algorithms, efficient

coding, and minimum reliance on external entities, the costs

incurred and the time taken during the execution of a program

are reduced. Analyzing the execution logs in order to remove

performance issues.

Memory and Timeout Configuration: When setting up

Lambda functions, it is essential to select memory and timeout

values that fit the requirements of the tasks being run. Memory

allocation has repercussions on both efficiency and expense;

functions with higher sets of memory operate faster while

incurring higher costs. Optimize memory use to cater for

performance requirements without high costs. Extend timeouts

to avoid having lengthy processing times for the executions.

Avoid Cold Starts: Reduce the effect of cold starts by

employing provisioned concurrency for the use of functions that

need optimum low-latency performance. Provisioned

Concurrency ensures that a distinct number of Lambda

invocation compute capacity is continuously warm to minimize

the cold start latency to the users.

Efficient Resource Use: To optimize performance and reduce

costs when using Lambda, ensure that a function is invoked only

by required events. Also, it is required to utilize event filtering

and validation in order to reduce the amount of useless function’s

launches. Optimize event source and event triggers to minimize

successive occurrences of the event (Rajan, 2018).

Best Practices for Secure Serverless Application

Design

Security in serverless applications is very crucial and has to

follow certain guidelines to ensure that data, apps and

infrastructure are protected from vulnerabilities and threats.

Principle of Least Privilege: IAM users should adhere to the

principle of least privilege when creating roles and applying

policies. Establish fine-grained access to Lambda functions, API

Gateway, and other AWS services so that each part can only

perform the tasks it requires. Conduct periodic audits and

modifications of IAM policies so as to maintain security

standards.

Data Encryption: Secure static data and messages in motion.

Integrate AWS KMS for managing encryption keys and enabling

encryption for data stored in DynamoDB or any other services.

Make sure Service to Service communications use TLS/SSL for

encoding data to be transmitted.

Secure API Gateway Endpoints: Ensure that only the approved

users or clients are able to access API Gateway endpoints

through the mechanisms of authentication and authorization.

Use OAuth2, AWS Cognito, or Custom Authorizers for API

authorization.

Regular Security Audits: Perform security assessments and

penetration testing of the serverless infrastructure on a periodic

basis. Utilize AWS Security Hub and AWS Inspector tools to

detect and mitigate possible security vulnerabilities. To

minimize the exploitation of these holes, the dependencies

should be updated and patched frequently.

Logging and Monitoring: You can turn on the high level of log

generation and monitoring with AWS CloudWatch and AWS X-

Ray services. Check the logs for suspicious activity or security

events and create CloudWatch Alarms to alert you of major

security events. Continuously analyze logs to detect

susceptibilities of the system and to mitigate risks (Sbarski &

Kroonenburg, 2017).

Case Study: Implementing a Secure and Scalable

Serverless Solution

Project Overview The e-commerce platform’s backend needed

to support varying traffic to provide an adequate and secure

number of transactions. The solution employed AWS Lambda,

API Gateway, DynamoDB, and other AWS services.

Architecture They used Lambda for compute, API Gateway for

API, and DynamoDB for data storage. API Gateway had rate

limiting and caching policies set up to control traffic and

optimize the outstanding performance. Lambda functions were

conceived specifically for handling transactions and,

consequently, DynamoDB.

Security Measures Measures taken relating to security were the

use of AWS KMS to encrypt customer data, API Gateway with

AWS Cognito for identity checking, using IAM roles together

with the principle of minimal privilege. Dead Letter Queue

(DLQs) were used in the error messaging and message recovery

technique.

http://jtipublishing.com/jti

Volume 5 Issue 3, July -September 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Scalability To accommodate change in traffic, the solution

harnessed AWS Lambda’s ability to scale up or down

automatically. The DynamoDB provision was set to auto-scaling

and partitioning to handle large traffic loads and optimize for

performance.

Outcome The serverless solution was able to grow with the

changes in throughput, keep transactions safe from customers,

and manage costs effectively. Control and audit helped to

prevent performance and security issues by being proactive in

the matters (Xu et al., 2019).

Conclusion

 Delivering robust and highly available SaaS solutions on AWS

relies on the efficient use of Lambda and API Gateway and

DynamoDB. Through following the standard of security,

scalability and data management, developers can build highly

available and scalable serverless applications for handling

unpredictable volumes of workloads. AWS provides serverless

solutions which allow the creation of more contemporary and

responsive applications by stressing on functions rather than

servers. It also enables businesses to focus on growth and

increased productivity without worrying much about the various

underlying system (Siriwardena & Siriwardena, 2020).

Reference

 [1]Diagboya, E. (2021). Infrastructure Monitoring with

Amazon CloudWatch: Effectively monitor your AWS

infrastructure to optimize resource allocation, detect anomalies,

and set automated actions. Packt Publishing Ltd.

[2]Kokkinos, P., Varvarigou, T. A., Kretsis, A., Soumplis, P., &

Varvarigos, E. A. (2013, June). Cost and utilization optimization

of amazon ec2 instances. In 2013 IEEE Sixth International

Conference on Cloud Computing (pp. 518-525). IEEE.

[3]Mazinanian, D., Ketkar, A., Tsantalis, N., & Dig, D. (2017).

Understanding the use of lambda expressions in

Java. Proceedings of the ACM on Programming

Languages, 1(OOPSLA), 1-31.

[4]Niranjanamurthy, M., Archana, U. L., Niveditha, K. T., Jafar,

S. A., & Shravan, N. S. (2014). The research study on

DynamoDB—NoSQL database service. Int. J. Comput. Sci.

Mob. Comput, 3(10), 268-279.

[5]Rajan, R. A. P. (2018, December). Serverless architecture-a

revolution in cloud computing. In 2018 Tenth International

Conference on Advanced Computing (ICoAC) (pp. 88-93).

IEEE.

[6]Sbarski, P., & Kroonenburg, S. (2017). Serverless

architectures on AWS: with examples using Aws Lambda. Simon

and Schuster.

[7]Siriwardena, P., & Siriwardena, P. (2020). Edge security with

an API gateway. Advanced API Security: OAuth 2.0 and

Beyond, 103-127.

[8]Xu, R., Jin, W., & Kim, D. (2019). Microservice security

agent based on API gateway in edge

computing. Sensors, 19(22), 4905.

http://jtipublishing.com/jti

