
Journal of Technological Innovations

Est. 2020

Volume 5 Issue 3, July -September 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Eliminating Toil Of Writing Value Classes in Java

Nilesh Jagnik

Email: nileshjagnik@gmail.com

Abstract:

Writing and maintaining value classes (classes that are mainly data carriers) in Java can be a cumbersome task. This is because

traditionally Java did not have special support for value classes which is present in other languages like Python. In this paper

we discuss the use of Google’s Auto Value library to create value objects. We also discuss Java Record classes, which are a

new feature added in Java 16 to support value classes.

Keywords: value classes, programming best practices

Introduction
A Java class is a definition for an object that contains both data

and logic. Classes can contain several pieces of logic that use

data members to perform complex operations generating some

intended output from provided input.

However, there can be classes which do contain any complex

logic and are simply used as containers for carrying data. Such

classes are called value classes. Value classes are intended to

be representation for a set of data fields. Developers can create

these classes to passes several pieces of data as a single unit.

In Java, there is no distinction between regular classes and

value classes. This can lead to several challenges. Developers

are required to write lengthy class definitions for what is a

very simple collection of data. This can lead to toil of

repeatedly writing similar classes and also introduce bugs as

now more code needs to be written. In this paper, we discuss

the use of an open-source library called AutoValue which

automatically creates value classes. Later we also discuss

Records, which is a language feature since Java SE 16. We

will also present a comparison of these two options.

Usage of Value Classes
Value classes are intended for handling multiple pieces of data

as a unit. This is useful because handling multiple data

variables separately in code can become cumbersome.

Imagine a situation where a we have ten related data variables

that need to be accessed together. Passing these variables

around would require adding these as individual parameters

to every method that needs these. This would make code

unnecessarily verbose. It would add considerable toil if these

variables had to be passed through multiple modules and

levels of abstraction. On top of this, if a new variable needs to

be added to this group, it would require updating code

everywhere these fields are passed.

This is the utility of value classes. Instead of handling multiple

data variables we could create a single class which stores all

these data variables as member fields. Then the code would

only need to pass a single combined value object. Updating

the value object to add fields is also easy and would only

require changes to the code that creates and consumes the new

fields.

Many other languages provide native support for value

classes, e.g., Python and Kotlin have data classes. But this has

been a missing feature in Java until the release of Record in

Java SE 16.

Properties of Value Classes
There are certain desirable properties from a value class. As

expected, depending on the applications, some of these

properties may be more desirable in comparison to others. We

will refer to these properties when we present the solutions for

easily creating value classes.

Equality

Two value objects that are instances of the same value class

are considered equal if all of their member fields are equal.

This is true even if there are actually two separate objects in

memory. This is similar to how the language treats primitives

like integers and strings as equal if their values are equal. As

an implication of this, any value class should define an equals

member method which formalizes this notion of equality.

HashCode and ToString

Value classes also need a hashCode member method. Without

this, it would not be possible to use value objects as keys for

HashMaps, etc. Additionally, if two objects are equal

according to equals then their hashCode should also match.

To ensure pretty printing of value objects, value classes should

also declare a toString member methods.

Immutability

Value classes should be immutable, i.e., the values of member

fields should never change. This is because value classes are

meant to imitate behavior of primitive data types like integers

which cannot be mutated once set.

http://jtipublishing.com/jti

Volume 5 Issue 3, July -September 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Problems With Writing Value Classes in Java

Verbosity

As displayed by the value class definition in Fig. 1, writing a

value class in Java is quite verbose. This can add quite a lot of

toil on software developers. Even when software projects

have generic base classes that use reflection for implementing

common methods like equals, hashCode and toString, there is

still a cost for maintaining these base classes, which can often

get pretty complex themselves.

Error Prone

In addition to toil added due to writing lot of repetitive code,

the code itself can get complex over time, especially if base

classes are created to prevent duplication of logic. This

complexity can lead to the introduction of bugs. Additionally,

this complexity hurts the overall readability of code and

makes code reviews tougher.

Fig. 1. A typical value class in Java

Autovalue

Value Class Definitions

The AutoValue library developed by Google provides an easy

way to automatically generate value classes. The code

developer provides a specification for the value class by

creating an abstract class with the desired member fields. Any

code that needs the value object can use the abstract class

defined. The AutoValue framework automatically generates a

full class matching the specification of the abstract value

class. This frees developers from implementing these value

classes themselves.

Fig. 2. Using AutoValue for creating a value class

Auto Generated Code

After defining an abstract value class like the one in Fig. 2,

the framework generates all boilerplate for it to behave like

the normal value class shown in Fig. 1. The framework

generates the equals, hashCode and toString member

methods. The framework also generates accessor methods for

each field in the value class.

Nullable Properties

By default, field values can not be null. The framework has

checks to ensure this. However, if null properties should be

allowed, the abstract class can simply mark the accessor

method and the corresponding parameter to the create method

as @Nullable.

Immutability

AutoValue objects are immutable. There is no way to change

the set values of fields after object creation. However, if the

fields themselves are mutable collections, they can be altered.

It is suggested to use immutable collections wherever

possible. Google’s Guava core libraries offer immutable

versions of commonly used collection types like List, Set,

Map, etc.

Primitive Arrays as Fields

The use of primitive arrays as member fields in AutoValue

classes is fully supported. The auto generated code also

ensures equality checks work correctly by comparing the

values inside arrays. However, arrays of generic Object type

are not supported.

Memoization

In some cases, a value class may have a property derived from

the rest of its member fields. It may be a large amount of work

to compute this property. It would be valuable to cache the

value of such properties so that they do not need to be

computed more than once. AutoValue classes support case.

Simply annotating any method in the abstract class definition

with the @Memoized annotation achieves caching of the

return value generated by the method. Any subsequent calls to

this method return the cached value. To qualify for

memoization, the method should be non-abstract, have no

parameters and should not return void.

public class Cuboid {

 public int length;

 public int width;

 public int depth;

 Cuboid(int length, int width, int depth) {

 this.length = length;

 this.width = width;

 this.depth = depth;

 }

 public int hashCode() {

 return Objects.hash(length, width, depth);

 }

 public boolean equals(Cuboid other) {

 return length == other.length

 && width == other.width

 && depth == other.depth;

 }

 public String toString() {

 return String.format(

 "Cuboid[Length: %d, Width: %d, Depth: %d]",

 length, width, depth);

 }

}

// This annotation triggers auto generation of

// the value class.

@AutoValue

abstract class Cuboid {

 static Cuboid create(

 int length,

 int width,

 int depth) {

 return new AutoValue_Cuboid(length, width, depth);

 }

 // It is required to define accessors for

 // properties.

 abstract int length();

 abstract int width();

 abstract int depth();

}

http://jtipublishing.com/jti

Volume 5 Issue 3, July -September 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Builder Pattern Support

When the number of member fields in a value class becomes

very high, the static factory method create has to accept a lot

of parameters. The caller of the factory method has to specify

too many parameters causing the code to be harder to read and

error prone since parameters need to passed in the right order.

If the types of parameters are the same, then specifying

parameters in the wrong order wouldn’t be detected as an error

by the compiler but will lead to runtime errors/bugs. In

addition, some parameters may be optional for which null

values needs to be explicitly passed in. A solution to this

problem is the builder pattern which allows setting parameters

in a declarative way.

The builder pattern support also allows setting default values

for fields, so the client code can only set necessary parameters.

Records
Java added native support for value classes in starting from

Java SE 16. These classes are called Record classes. Records

have most of features of AutoValue classes while being better

integrated with the Java language.

Class Definition

Defining a record class is very simple. The definition is similar

to a constructor of a normal class. Member fields for each

constructor parameter are automatically generated for the

class. Accessor methods also generated for accessing each

field. Also similar to AutoValue, equals, hashCode and

toString are automatically generated.

Fig. 3. Record class definition

Constructors

A canonical constructor is automatically generated for each

Record class. The canonical constructor can also be explicitly

defined if more control is needed.

In addition, custom constructors can also be defined. Simply

adding a new constructor to the class definition works as

expected. All other constructors must invoke the canonical

constructor of a class.

Auto Generated Methods

Similar to how the canonical constructor can be explicitly

defined, accessors can also be explicitly defined. The equals,

hashCode and toString methods can also be explicitly defined

if needed.

Features

Record classes are similar to normal classes. However, they

are implicitly final. Record classes cannot be extended. Apart

from this restriction, Record classes are very similar to normal

classes. Additional member functions can also be added inside

them. However non-static member fields cannot be added

(apart from ones defined in the constructor). Any member

fields added outside of the constructor should be static. In the

same vein, instance initializers are not allowed. Record

classes can be defined using generic types too. Annotations

can be added to member fields and functions. Record classes

can also implement interfaces.

Comparison Between Autovalue and Records
Between AutoValue and Record classes, the general

preference should be to use Record classes wherever possible

since they are a language feature. However, there may be

some scenarios where AutoValue classes are still preferable.

Java Version

For creating value classes in Java 15 or earlier, AutoValue is

the only option. AutoValue on the other hand, is API-invisible.

This means that for the user of an AutoValue class there is no

difference from a normal class. This means it can be used in

any version of Java.

Static Factory Method

Static factory methods are preferred over exposing

constructors because they are much more efficient and less

prone to error. Record classes have a public constructor

forcing the constructor to be exposed. This could lead to less-

than-ideal coding practices.

Support for Primitive Arrays

As discussed earlier, AutoValue has support for primitive

arrays. The implementation of equals and hashCode account

for the special case around arrays.

Caching Derived properties

Record classes cannot have member fields so it is hard to

cache a derived property. This is very easy to do in AutoValue

using memoization.

Extensions

AutoValue has support for extensions. This allows adding
custom functionality to code generation behavior. There are
several built in extensions supporting high level features which
are missing in Records. One such feature is the support for
memoization.

Conclusion

Value classes are an important part of software programming.
These classes must be implemented in optimal ways that
reduce toil due to boilerplate and errors. So it is a great idea to
use either AutoValue or Record classes for defining value
classes. Although there may preferences to use one solution
over the other, but at the end of the day, either one works to
eliminating toil from writing and maintaining value classes.

References

[1] Joshua Bloch, “Effective Java, 3rd Edition (Dec 2017),”
https://books.google.com/books?id=auW80AEACAAJ

[2] Bhaskar Ghosh, “Value-Based Classes in Java (Jun
2024),” https://www.baeldung.com/java-value-based-
classes

[3] Éamonn McManus, Kevin Bourrillion, “AutoValue (Jan
2024),”

record Cuboid(int length, int width, int depth) {}

http://jtipublishing.com/jti
https://books.google.com/books?id=auW80AEACAAJ
https://www.baeldung.com/java-value-based-classes
https://www.baeldung.com/java-value-based-classes

Volume 5 Issue 3, July -September 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

https://github.com/google/auto/blob/main/value/userguid
e/index.md

[4] “Record Classes (March 2024),”
https://docs.oracle.com/en/java/javase/22/language/recor
ds.html

[5] Gavin Bierman, “JEP 395: Records (Jun 2020),”
https://openjdk.org/jeps/395

http://jtipublishing.com/jti
https://github.com/google/auto/blob/main/value/userguide/index.md
https://github.com/google/auto/blob/main/value/userguide/index.md
https://docs.oracle.com/en/java/javase/22/language/records.html
https://docs.oracle.com/en/java/javase/22/language/records.html
https://openjdk.org/jeps/395

