

Eliminating Toil Of Writing Value Classes in Java

Nilesh Jagnik Email:

nileshjagnik@gmail.com Abstract:

Writing and maintaining value classes (classes that are mainly data carriers) in Java can be a cumbersome task. This is because

traditionally Java did not have special support for value classes which is present in other languages like Python. In this paper

we discuss the use of Google’s Auto Value library to create value objects. We also discuss Java Record classes, which are a

new feature added in Java 16 to support value classes.

if a new variable needs to be added to this group, it would

Keywords: value classes, programming best practices

Introduction
A Java class is a definition for an object that contains both

data and logic. Classes can contain several pieces of logic that

use data members to perform complex operations generating

some intended output from provided input.

However, there can be classes which do contain any complex

logic and are simply used as containers for carrying data.

Such classes are called value classes. Value classes are

intended to be representation for a set of data fields.

Developers can create these classes to passes several pieces

of data as a single unit.

In Java, there is no distinction between regular classes and

value classes. This can lead to several challenges. Developers

are required to write lengthy class definitions for what is a

very simple collection of data. This can lead to toil of

repeatedly writing similar classes and also introduce bugs as

now more code needs to be written. In this paper, we discuss

the use of an open-source library called AutoValue which

automatically creates value classes. Later we also discuss

Records, which is a language feature since Java SE 16. We

will also present a comparison of these two options.

Usage of Value Classes
Value classes are intended for handling multiple pieces of

data as a unit. This is useful because handling multiple data

variables separately in code can become cumbersome.

Imagine a situation where a we have ten related data variables

that need to be accessed together. Passing these variables

around would require adding these as individual parameters

to every method that needs these. This would make code

unnecessarily verbose. It would add considerable toil if these

variables had to be passed through multiple modules and

levels of abstraction. On top of this, require updating code

everywhere these fields are passed.

This is the utility of value classes. Instead of handling

multiple data variables we could create a single class

which stores all these data variables as member fields.

Then the code would only need to pass a single combined

value object. Updating the value object to add fields is also

easy and would only require changes to the code that

creates and consumes the new fields.

Many other languages provide native support for value

classes, e.g., Python and Kotlin have data classes. But this has

been a missing feature in Java until the release of Record in

Java SE 16.

Properties of Value Classes
There are certain desirable properties from a value class. As

expected, depending on the applications, some of these

properties may be more desirable in comparison to others. We

will refer to these properties when we present the solutions

for easily creating value classes.

Equality

Two value objects that are instances of the same value class

are considered equal if all of their member fields are equal.

This is true even if there are actually two separate objects in

memory. This is similar to how the language treats primitives

like integers and strings as equal if their values are equal. As

an implication of this, any value class should define an equals

member method which formalizes this notion of equality.

HashCode and ToString

Value classes also need a hashCode member method. Without

this, it would not be possible to use value objects as keys for

Journal of
 Technological Innovation

E st . 2020

Volume 5 Issue 3, July -September 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal http://jtipublishing.com/jti

HashMaps, etc. Additionally, if two objects are equal

according to equals then their hashCode should also match.

To ensure pretty printing of value objects, value classes

should also declare a toString member methods.

Immutability

Value classes should be immutable, i.e., the values of member

fields should never change. This is because value classes are

meant to imitate behavior of primitive data types like integers

which cannot be mutated once set.

Problems With Writing Value Classes in Java

Verbosity

As displayed by the value class definition in Fig. 1, writing a

value class in Java is quite verbose. This can add quite a lot

of toil on software developers. Even when software projects

have generic base classes that use reflection for implementing

common methods like equals, hashCode and toString, there

is still a cost for maintaining these base classes, which can

often get pretty complex themselves.

Error Prone

In addition to toil added due to writing lot of repetitive code,

the code itself can get complex over time, especially if base

classes are created to prevent duplication of logic. This

complexity can lead to the introduction of bugs. Additionally,

this complexity hurts the overall readability of code and

makes code reviews tougher.

public class Cuboid {

public int length;

public int width;

public int depth;

 Cuboid(int length, int width, int depth)

{ this.length = length; this.width

= width; this.depth = depth;
 } public int hashCode() { return

Objects.hash(length, width, depth);
 } public boolean equals(Cuboid

other) { Fig. 1.
A typical value class in Java

Autovalue

Value Class Definitions

The AutoValue library developed by Google provides an easy

way to automatically generate value classes. The code

developer provides a specification for the value class by

creating an abstract class with the desired member fields. Any

code that needs the value object can use the abstract class

defined. The AutoValue framework automatically generates a

full class matching the specification of the abstract value

class. This frees developers from implementing these value

classes themselves.

// This annotation triggers auto generation of
// the value class. @AutoValue abstract class Cuboid

{ static Cuboid create(int length,
int width, int depth) { return new

AutoValue_Cuboid(length, width, depth);

 }

Fig. 2. Using AutoValue for creating a value class

Auto Generated Code

After defining an abstract value class like the one in Fig. 2,

the framework generates all boilerplate for it to behave like

the normal value class shown in Fig. 1. The framework

generates the equals, hashCode and toString member

methods. The framework also generates accessor methods for

each field in the value class.

Nullable Properties

By default, field values can not be null. The framework has

checks to ensure this. However, if null properties should be

allowed, the abstract class can simply mark the accessor

method and the corresponding parameter to the create method

as @Nullable.

Immutability

AutoValue objects are immutable. There is no way to change

the set values of fields after object creation. However, if the

fields themselves are mutable collections, they can be altered.

It is suggested to use immutable collections wherever

possible. Google’s Guava core libraries offer immutable

versions of commonly used collection types like List, Set,

Map, etc.

Primitive Arrays as Fields

The use of primitive arrays as member fields in AutoValue

classes is fully supported. The auto generated code also

 http://jtipublishing.com/jti
Volume 5 Issue 3, July -September 2024 Fully Refereed | Open Access

| Double Blind Peer Reviewed Journal

Volume 5 Issue 3, July -September 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal http://jtipublishing.com/jti

ensures equality checks work correctly by comparing the

values inside arrays. However, arrays of generic Object type

are not supported.

Memoization

In some cases, a value class may have a property derived from

the rest of its member fields. It may be a large amount of work

to compute this property. It would be valuable to cache the

value of such properties so that they do not need to be

computed more than once. AutoValue classes support case.

Simply annotating any method in the abstract class definition

with the @Memoized annotation achieves caching of the

return value generated by the method. Any subsequent calls

to this method return the cached value. To qualify for

memoization, the method should be non-abstract, have no

parameters and should not return void.

Builder Pattern Support

When the number of member fields in a value class becomes

very high, the static factory method create has to accept a lot

of parameters. The caller of the factory method has to

specify too many parameters causing the code to be harder

to read and error prone since parameters need to passed in

the right order. If the types of parameters are the same, then

specifying parameters in the wrong order wouldn’t be

detected as an error by the compiler but will lead to runtime

errors/bugs. In addition, some parameters may be optional

for which null values needs to be explicitly passed in. A

solution to this problem is the builder pattern which allows

setting parameters in a declarative way.

The builder pattern support also allows setting default values

for fields, so the client code can only set necessary

parameters.

Records
Java added native support for value classes in starting

from Java SE 16. These classes are called Record classes.

Records have most of features of AutoValue classes while

being better integrated with the Java language.

Class Definition

Defining a record class is very simple. The definition is

similar to a constructor of a normal class. Member fields

for each constructor parameter are automatically

generated for the class. Accessor methods also generated

for accessing each field. Also similar to AutoValue,

equals, hashCode and toString are automatically

generated.

record Cuboid(int length, int width, int depth) {}

Fig. 3. Record class

definition

Constructors

A canonical constructor is automatically generated for

each Record class. The canonical constructor can also be

explicitly defined if more control is needed.

In addition, custom constructors can also be defined.

Simply adding a new constructor to the class definition

works as expected. All other constructors must invoke the

canonical constructor of a class.

Auto Generated Methods

Similar to how the canonical constructor can be explicitly

defined, accessors can also be explicitly defined. The

equals, hashCode and toString methods can also be

explicitly defined if needed.

Features

Record classes are similar to normal classes. However,

they are implicitly final. Record classes cannot be

extended. Apart from this restriction, Record classes are

very similar to normal classes. Additional member

functions can also be added inside them. However non-

static member fields cannot be added (apart from ones

defined in the constructor). Any member fields added

outside of the constructor should be static. In the same

vein, instance initializers are not allowed. Record classes

can be defined using generic types too.

Annotations can be added to member fields and functions.

Record classes can also implement interfaces.

Comparison Between Autovalue and Records
Between AutoValue and Record classes, the general

preference should be to use Record classes wherever possible

since they are a language feature. However, there may be

some scenarios where AutoValue classes are still preferable.

Java Version

For creating value classes in Java 15 or earlier, AutoValue is

the only option. AutoValue on the other hand, is API-

invisible. This means that for the user of an AutoValue class

there is no difference from a normal class. This means it can

be used in any version of Java.

Static Factory Method

Static factory methods are preferred over exposing

constructors because they are much more efficient and less

prone to error. Record classes have a public constructor

forcing the constructor to be exposed. This could lead to

lessthan-ideal coding practices.

Volume 5 Issue 3, July -September 2024

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal http://jtipublishing.com/jti

Support for Primitive Arrays

As discussed earlier, AutoValue has support for primitive

arrays. The implementation of equals and hashCode account

for the special case around arrays.

Caching Derived properties

Record classes cannot have member fields so it is hard to

cache a derived property. This is very easy to do in AutoValue

using memoization.

Extensions

AutoValue has support for extensions. This allows adding

custom functionality to code generation behavior. There are

several built in extensions supporting high level features

which are missing in Records. One such feature is the support

for memoization.

Conclusion
Value classes are an important part of software programming.

These classes must be implemented in optimal ways that

reduce toil due to boilerplate and errors. So it is a great idea

to use either AutoValue or Record classes for defining value

classes. Although there may preferences to use one solution

over the other, but at the end of the day, either one works to

eliminating toil from writing and maintaining value classes.

References

[1] Joshua Bloch, “Effective Java, 3rd Edition (Dec 2017),”

https://books.google.com/books?id=auW80AEACAAJ

[2] Bhaskar Ghosh, “Value-Based Classes in Java (Jun

2024),” https://www.baeldung.com/java-

valuebasedclasses

[3] Éamonn McManus, Kevin Bourrillion, “AutoValue (Jan

2024),”

https://github.com/google/auto/blob/main/value/usergui

d e/index.md

[4] “Record Classes (March 2024),”

https://docs.oracle.com/en/java/javase/22/language/reco

r ds.html

[5] Gavin Bierman, “JEP 395: Records (Jun 2020),”

https://openjdk.org/jeps/395

https://books.google.com/books?id=auW80AEACAAJ
https://books.google.com/books?id=auW80AEACAAJ
https://books.google.com/books?id=auW80AEACAAJ
https://www.baeldung.com/java-value-based-classes
https://www.baeldung.com/java-value-based-classes
https://www.baeldung.com/java-value-based-classes
https://www.baeldung.com/java-value-based-classes
https://www.baeldung.com/java-value-based-classes
https://www.baeldung.com/java-value-based-classes
https://www.baeldung.com/java-value-based-classes
https://www.baeldung.com/java-value-based-classes
https://www.baeldung.com/java-value-based-classes
https://www.baeldung.com/java-value-based-classes
https://github.com/google/auto/blob/main/value/userguide/index.md
https://github.com/google/auto/blob/main/value/userguide/index.md
https://github.com/google/auto/blob/main/value/userguide/index.md
https://github.com/google/auto/blob/main/value/userguide/index.md
https://github.com/google/auto/blob/main/value/userguide/index.md
https://github.com/google/auto/blob/main/value/userguide/index.md
https://docs.oracle.com/en/java/javase/22/language/records.html
https://docs.oracle.com/en/java/javase/22/language/records.html
https://docs.oracle.com/en/java/javase/22/language/records.html
https://docs.oracle.com/en/java/javase/22/language/records.html
https://docs.oracle.com/en/java/javase/22/language/records.html
https://docs.oracle.com/en/java/javase/22/language/records.html
https://openjdk.org/jeps/395
https://openjdk.org/jeps/395
https://openjdk.org/jeps/395

