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Abstract:   

This paper discusses the findings of a study comparing different approximation models or machine learning models for 

prediction of structural responses of a honeycomb panel. Three different approximation models have been compared- 

Response Surface Model (RSM), Radial Basis Functions (RBF) and Universal Kriging method (UK). For each 

approximation model, average relative error between the predicted response and FEA response is compared for different 

designs. The findings are summarized and potential next steps to fortify the study are listed   
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Introduction   

Approximations or surrogate modeling is a subset of 

machine learning that could be used to predict an 

approximate response for different functions. This 

involves training and validation of approximation models 

based on a set of observed data points. Once the training is 

complete, these models can be used to predict a response 

at unobserved data points. Approximations find use in 

multitude of applications. One such application is 

structural analysis using Finite Element Methods (FEM).    

Based on the application at hand, Finite Element Analysis 

(FEA) can be computationally very expensive and for 

certain complex analysis, compute time can range from 

hours to days depending on choice of compute architecture 

and scalability of the numerical problem at hand.    

Approximations can be very useful in these situations. FEA 

could be run for limited number of data points and 

approximation methods can be used to build surrogate 

models which can predict the response for FEA datapoints 

that are originally unsolved for.   

Approximation methods can be of different types and can 

provide different accuracies in prediction. This paper aims 

to compare three commonly used approximation methods- 

Response Surface Model, Radial Basis Function and  

Universal Kriging method. Materials and Methods   

Stress analysis of a honeycomb panel has been used as an 

example in this study. Honeycomb core sandwich panel is 

formed by adhering two, high-rigidity, thin face sheets 

with a low-density honeycomb core possessing less 

strength and stiffness [1]. Adhesively bonded sandwich 

structures, with their advantages of light weight, design 

flexibility, high specific stiffness and specific strength, are 

attractive structural components and are therefore widely 

used in aviation, space, and marine applications. The face-

sheet (skin) and core of sandwich structures can 

encompass a myriad of materials, both composite and 

metallic [2]. [2] lists multiple combinations of such 

materials used in different applications. One such 

combination is metallic sandwich structure, which 

especially uses aluminum facesheet over aluminum 

honeycomb, is widely used as slat wedge, trailing edge, 

ailerons on aircraft, and in satellite structures [2]. This 

study uses structural analysis of such metallic sandwich 

structure. It is assumed that the entire structure including 

the face-sheet and core is made of Aluminum and generic 

mechanical properties are used for the stress analysis.   
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    Fig. 3a. shows face sheets meshed with 8-noded Hex  

This study is done in multiple steps. Fig. 1. shows the steps  elements (C3D8) and the core meshed with 4-noded Shell  
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used in the workflow:   

   
   

   

Fig. 1. Process Flowchart    

Baseline FEA of a Honeycomb Panel   

A Honeycomb Panel 400mm long and 150mm wide (Fig. 

2) is considered. The face-sheets and the core are assumed 

to have generic Aluminum material properties with a 

Young’s modulus of 7e4 MPa and Poisson’s ratio of 0.3.    

  
   

Fig. 2. Honey Comb Panel   

The design is controlled by following geometric 

parameters:   

• Cell size (Cr): controls the size of the regular hexagonal 

cell that makes up the core   

• Cell Thickness (tc): controls the thickness of the core   

• Cell Height (Ch): controls the core height   

• Top Sheet Thickness (tt): controls the thickness of the 

top face-sheet   

• Bottom Sheet Thickness(tb): controls the thickness of the 

bottom face-sheet   

The baseline values of geometric parameters is shown in 

TABLE I.   

TABLE I.  BASELINE VALUES OF GEOMETRIC 

PARAMETERS   

Cr   tc   Ch   tt   tb   

20 mm   4 mm   25 mm   5 mm   5 mm   

   

elements (S4). The face-sheets are tied together with the 

core. A non-linear static procedure is used. Fig. 3b. shows 

one end of the face-sheets fixed and a uniform pressure 

loading of 150 KPa on the top face. Simulation is run and 

two specific responses are monitored- the maximum value 

of Von Mises Stress σVMmax and the maximum value of the 

Displacement magnitude Umax . The baseline values of 

responses are shown in TABLE II.   

   

   

Fig. 3. (a) Mesh and (b) Boundary Conditions   

  TABLE II.    BASELINE VALUES OF RESPONSE   
VARIABLES   

𝝈𝑽𝑴𝒎𝒂𝒙   𝑼𝒎𝒂𝒙   

97.96 MPa   2.97 mm   

   

Design of Experiments (DOE):   

A DOE is setup using the Optimal Latin Hypercube 

technique (OLH). OLH optimizes the combinations of 

design variables to evenly spread experiment points within 

n-dimensional space defined by n design variables. 

Number of levels for each design variable is equal to 

number of experiment points. This allows for many more 

points and more combinations to be studied for each 

design variable. The experiment points are spread evenly, 

allowing higher order effects to be captured [3]. Fig. 4. 

shows an example of the sampling using OLH technique 

in design space.   
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Fig. 4. Design space sampling in OLH technique   

   

This DOE is configured with 5 Design Variables, 2 

Response Variables and runs 45 experiment points as shown 

in TABLE III.   

  TABLE III.    DOE CONFIGURATION   

   

Design Variables (DVs)       

Design 

Variable   
Lower Bound 

(mm)   
Baseline 

(mm)   
Upper Bound (mm)   

tb   1   5   5   

Cr   5   20   30   

tc   1   4   4   

Ch   10   25   25   

tt   1   5   5   

Response Variables (RVs)       

Response 

Variable   
Objective     Weight

 
  

Umax   Minimize     1   

σVMmax   Minimize     1   

Approximations:   

Once the DOE generates the design data set, it is used to test 

three approximation methods. The methods compared are 

Response Surface Method, Radial Basis Functions and 

Universal Kriging method.   

   

Each approximation model is trained and validated to the 

DOE design data set and the fit measures are noted for both 

the response variables. Each of the approximation models 

is validated using the K-fold cross validation method (K=9).   

   

K-Fold Cross Validation:   

This validation technique randomly selects data points from 

the data set and divides the data set into ‘K’ subsets (folds) 

of equal size. Each subset of data is removed from the data 

set, and the model is re-trained using the reduced data set. 

The cross-validation percent error is then calculated by 

comparing the actual and predicted values of the response 

variable at each point that was removed. This procedure is 

repeated for each of the ‘K’ subsets [3].   

   

Response Surface Model (RSM):    

The Response Surface Model uses a polynomial 

combination of vectors representing the input parameters. 

The order of the polynomial regression model depends on 

the number of experiment points in the data set [3]. This 

study uses a polynomial with tenth-order uni-variate terms 

and fifth-order cross terms for the model.   

   

Radial Basis Function (RBF):    

The Radial Basis Function model is a type of neural 

network employing a hidden layer of radial units and an 

output layer of linear units. The RBF model has a short 

initialization time and is generally faster than the response 

surface model for a large number of data points [3].   

   

Universal Kriging (UK):   

The Universal Kriging model is an interpolation method 

that converts partial observations of a spatial field to 

predictions of that field at unobserved locations. The 

model is useful in predicting temporally and spatially 

correlated data and typically creates a good approximation 

in cases with a small number of data points.   

   

Kriging model is very flexible and provides a choice 

between a wide range of correlation functions for building 

the model. Depending on the choice of the correlation 

function, the model can either honor the data (providing 

an exact interpolation of the data) or smooth the data  

(providing an inexact interpolation). [3]   

   

Prediction:   

In order to test how the trained and validated models 

perform in prediction, five random test points are selected. 

These points are within the bounds of the design space and 

are points which have not been run previously using FEA. 

For each test point, a FEA simulation is run and 

corresponding values of the response variables are noted. 

These values are then compared with predicted responses 

from each of the approximation models. TABLE IV shows 

the five test points.   

  TABLE IV.    TEST POINTS   

Test 

Point   tb (mm)   Cr (mm)   tc (mm)   Ch (mm)   tt (mm)   

1   3.2   5.7   2.4   21   3.2   

2   1.5   20   3   20   1.5   
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3   2.5   15   1.2   14   2.5   

4   2.7   10   3.3   11   3.5   

5   4.2   12   3.8   18   1.2   

   

   

Results and Conclusions   

Results for Response Surface Model   

TABLE V shows the training measures and the validation 

measures for approximation using Response Surface 

Model for both the response variables. Fig. 5. Shows the 

corresponding fit measures for Umax  and Fig. 6. shows the 

corresponding fit measures for σVM
max.   

  TABLE V.    FIT MEASURES FOR RSM   

Results for Radial Basis Function   

TABLE VI shows the training measures and the validation measures 

for approximation using Radial Basis Functions for both the 

response variables. Fig. 7. Shows the corresponding fit measures for 

Umax  and Fig. 8. shows the corresponding fit measures for σVM
max.   

   TABLE VI.    FIT MEASURES FOR RBF   

   

  

   

   

   

Response Surface Model 1 
  

  

Poly Order=10   
Training s   
measure  Validation measures   

    Umax   
(mm)

 
  

σVMmax   
(MPa)

 
  

Umax   
(mm)

 
  

σVMmax   
(MPa)

 
  

R-squared   0.986   0.928   0.933   0.718   

R-squared adjusted   0.985   0.919   0.924   0.682   

RMS Error   0.027   0.073   0.059   0.144   

Residual/Predicted   0.146   0.32   0.391   0.569   

% Error Abs Mean   5.44   9.97   11.6   20.3   

% Error Abs Max   22.4   33.6   47   60.4   

% Error Std Dev   4.63   6.9   10.7   12.7   
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Fig. 5. RSM fit measures for Umax  (a) Actual vs Predicted for  

training model (b) Cross Validation % Error   

Fig. 6. RSM fit measures for σVM
max  (a) Actual vs Predicted for   training model (b) Cross 

Validation % Error   

   

Fig. 7. RBF fit measures for Umax  (a) Actual vs Predicted for training model 

(b) Cross Validation % Error   

   

  

Fig. 9. UK fit measures for Umax  (a) Actual vs Predicted for training model (b) 

Cross Validation % Error   

    

Fig. 8. RBF fit measures for σVMmax  (a) Actual vs Predicted for training model (b) Cross Validation % Error   

   

Radial Basis Function 1     

    Training measures   Validation measures   

    Umax   
(mm)   

σVMmax  
(MPa)   

Umax   
(mm)   

σVMmax  
(MPa)   

R-squared   1   1   0.938   0.744   

R-squared adjusted   1   1   0.93   0.711   

RMS Error   1.04E-14   8.65E-15   0.0563   0.137   

Residual/Predicted   2.86E-14   2.35E-14   0.392   0.574   

% Error Abs Mean   2.15E-12   1.22E-12   10.5   18.5   

% Error Abs Max   6.40E-12   3.05E-12   61   61.7   

% Error Std Dev   1.78E-12   7.70E-13   10.9   13.4   
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Results for Universal Kriging method:    

TABLE VII shows the training measures and the validation  

Fig. 10. UK fit measures for σVMmax  (a) Actual vs Predicted for training 

measures for approximation using the Universal Kriging model (b) Cross Validation % Error  method for both the response variables. 

Fig. 9. Shows the corresponding fit measures for Umax  and Fig. 10. shows the  

 VM .   Comparison of Predicted Response and FEA response   

corresponding fit measures for σ max 

For the 5 chosen test points, TABLE VIII shows the  
TABLE VII.   FIT MEASURES FOR UK  comparison of relative error between predicted Umax   

response and FEA Umax   response for all approximation  

    
models.   

   

  

 TABLE VIII.   PREDICTED VS FEA (UMAX)    

      

   

For the 5 chosen test points, TABLE IX shows the 

comparison of relative error between predicted σVMmax 

response and FEA σVMmax  response for all approximation 

models.   

   

   

Test 

Point   

𝛔𝐕𝐌𝐦𝐚𝐱 (MPa)
 
  

    
% Error   

  

FEA   RSM   RBF   UK   RSM   RBF   UK   

1   173.77   143.55   202.68   292.74   17%   17%   68%   

2   381.78   551.83   547.5   514.78   45%   43%   35%   

3   366.18   434.34   414.41   504.7   19%   13%   38%   

4   362.64   333.99   348.76   456.93   8%   4%   26%   

5   492.74   515.78   477.91   477.91   5%   3%   3%   

  TABLE IX.    PREDICTED VS FEA (ΣMAX
VM)   

   

TABLE X shows the comparison of relative error averaged 

for the 5 test points for both responses and for all the 

approximation models.   

  TABLE X.    COMPARISON OF AVGERAGE RELATIVE   
ERROR    

   

 Approximation Model   
Avg % Error   

𝐔𝐦𝐚𝐱   
Avg % Error 𝛔𝐕𝐌𝐦𝐚𝐱   

RSM   11   18.8   

RBF   3.4   16   

Universal Kriging 1 
 
    

    Training measures   Validation measures   

    
Umax (mm)

 
  

σVMmax   
(MPa)   

Umax   
(mm)   

σVMmax   
(MPa)   

R-squared   1   1   0.907   0.715   

R-squared adjusted   1   1   0.895   0.679   

RMS Error   6.12E-16   1.31E-15   0.0691   0.144   

Residual/Predicted   1.96E-15   1.58E-15   0.364   0.667   

% Error Abs Mean   1.30E-13   2.07E-13   12.7   19.6   

% Error Abs Max   4.41E-13   3.70E-13   51.3   63.1   

% Error Std Dev   1.01E-13   7.06E-14   13.6   14   

Test 

Point   

𝐔𝐦𝐚𝐱 (mm)   

    

% Error   

  

FEA   RSM   RBF   UK   RSM   RBF   UK   

1   6.56   4.6   6.58   7.84   30%   0%   20%   

2   17.53   19.23   18.81   16.65   10%   7%   5%   

3   19.38   21.86   20.98   21.57   13%   8%   11%   

4   20.16   20.65   20.19   24.72   2%   0%   23%   

5   13.76   13.73   13.54   16.31   0%   2%   19%   
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UK   15.6   34   

   

For each approximation model, displacement prediction 

is better than the Von Mises stress predictions for the 

chosen test points. RBF model seems to have better 

accuracy in predicting the response variables when 

compared with the other two models.    

Next Steps   
   

The choice of the parameter values for the designs that 

the model is built with has a considerable impact on the 

accuracy of the predicted output [4]. The potential next 

steps could be studying the effect of different sets of 

design points and the number of experiment points 

available for training the approximation model on the 

accuracy of final response predictions. A few other 

factors that can be considered are the sampling algorithm 

used in the DOE and the effect of nonlinearities in the 

underlying baseline FEA    
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