
Journal of Technological Innovation

Etd. 2020

Volume 2 Issue 4, October – December 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

Intelligent Page Layout Delivery: Empowering

Values with Advanced Validation

Naveen Koka

Email: na.koka@outlook.com

Abstract:

In modern software development, efficient handling of user interactions within form-based applications is essential.

The proposed solution introduces a dynamic approach to page layout delivery, aiming to enhance user experience and

streamline data management processes. Central to this solution is the concept of virtual page layout definition, which

encapsulates crucial information regarding form objects, fields, and their configurations. By storing this information

either in a database table or JSON format, developers gain flexibility in managing and customizing page layouts to

meet diverse application requirements.

At the core of the runtime engine lies a structured lifecycle designed to facilitate the insertion or updating of page

layouts. During the "On Load" phase, essential parameters such as record ID, object name, and user persona details are

processed to initialize runtime operations effectively. Subsequently, the engine meticulously evaluates page layout

configurations, ensuring alignment with the specified object and user persona. Leveraging this information, it retrieves

field values from the record, enabling seamless integration of data into the designated page layout.

Upon execution of page layout actions, the runtime engine undergoes stringent validation checks to uphold data

integrity. It meticulously examines predefined validation criteria, ensuring that only actions meeting these criteria

proceed for evaluation. Following the execution of page layout actions, messages indicating success or failure are

promptly displayed, offering users real-time feedback on the outcome of their interactions. This abstract encapsulates

the essence of the proposed solution, highlighting its focus on dynamic page layout delivery, validation, and user-

centric feedback mechanisms.

Keywords: Dynamic page layout, Web Forms, Registration Forms, Web application

1.INTRODUCTION

Current digital landscape, data storage plays a pivotal

role in shaping the efficiency and effectiveness of

various systems and applications. The optimization of

data storage mechanisms holds significant

implications for enhancing overall performance,

scalability, and user experience. As organizations

grapple with vast volumes of data, the need for

codification strategies to streamline storage and

retrieval processes becomes increasingly imperative.

This quest for optimization extends beyond mere

storage considerations, encompassing factors such as

data integrity, accessibility, and security. Against the

backdrop of rapidly evolving technologies and

evolving user expectations, the pursuit of enhanced

data storage solutions emerges as a cornerstone of

modern digital infrastructure. By delving into the

intricacies of data storage codification, organizations

can unlock a wealth of opportunities for improving

operational efficiency, enabling seamless scalability,

and fostering innovation across diverse domains. This

article delves into the nuances of data storage

codification, exploring its role in driving enhanced

optimization and empowering organizations to

http://jtipublishing.com/jti
mailto:na.koka@outlook.com

Volume 2 Issue 4, October – December 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

navigate the complexities of modern data management

effectively.

2. PROBLEM STATEMENT

Regular Forms are integral components in various

applications, spanning from user registrations to

enterprise-level solutions, often serving as the initial

point of evaluation for app usability. Historically,

these forms have exhibited a rigid structure,

necessitating code modifications and releases for even

minor adjustments such as adding or removing fields.

This inflexibility not only consumes time but also

introduces the risk of errors. Recognizing this pattern,

application developers have sought to address these

challenges by implementing dynamic layout engines,

enabling the seamless addition and removal of fields

without the need for code alterations or subsequent

releases. However, as requirements evolve,

particularly in scenarios where diverse layouts are

contingent upon the values derived from selected

fields, new challenges emerge.

The focal point of discussion pertains to the delivery

of distinct layouts based on the values extracted from

a designated field. This requirement underscores the

need for an adaptive approach that accommodates

varying layouts in response to dynamic data inputs,

ensuring the efficacy and relevance of the displayed

information. Thus, the problem statement revolves

around devising mechanisms that facilitate intelligent

page layout delivery, empowering applications to

dynamically adjust their visual presentation in

accordance with the contextual information gleaned

from user inputs or system variables.

3. PROBLEM STATEMENT SCENARIO

Consider a scenario where a form includes a field

labeled "priority," and the objective is to tailor the

layout of subsequent page fields based on the priority

level selected. Specifically, when the priority is

designated as "High," the layout should dynamically

adjust to display different sets of fields compared to

when the priority is indicated as "Medium" or "Low."

This requirement highlights the necessity for a

responsive layout mechanism capable of recognizing

and adapting to varying priority levels. The challenge

lies in implementing a system that intelligently

reconfigures the page layout in real-time based on the

priority value provided, ensuring that the displayed

fields align with the corresponding priority level's

specific needs and expectations. Thus, the problem

statement underscores the importance of devising a

solution that enables seamless transitions between

different layouts contingent

upon the selected priority, thereby enhancing the

efficiency and user experience of form interactions.

4. SOLUTION

The proposed solution involves the virtual definition

of page layouts, wherein the layout configurations are

established conceptually rather than as static

structures. At runtime, these virtual layouts are utilized

to dynamically paint the page according to the

specified configuration, ensuring adaptability based

on input values. The runtime engine plays a pivotal

role in this process, as it evaluates the provided values

and subsequently renders the screen layout

accordingly. This entails a continuous assessment of

the data to determine the appropriate fields and their

corresponding positions within the layout.

Furthermore, the runtime engine is tasked with

executing designated actions associated with each

field, if applicable, upon data entry. These actions may

encompass validation checks, data processing tasks, or

other functionalities tailored to individual fields.

Importantly, the runtime engine must facilitate

seamless data saving procedures, ensuring that entered

information is accurately captured and stored. By

implementing this solution, applications can achieve a

dynamic and responsive form interaction experience,

wherein page layouts are adjusted in real-time based

on contextual data, enhancing usability and efficiency

for end-users.

Fig 1: Dynamic Page Layout

5. Page Layout Keywords

Frequently encountered keywords in discussions

regarding the solution are as follows: An "Object"

http://jtipublishing.com/jti

Volume 2 Issue 4, October – December 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

serves as a conceptual representation of stored data,

existing in a virtual capacity within the system.

"Fields" denote the conceptual definition of attributes

associated with the data, forming essential

components within the virtual representation.

"Criteria" refers to the expressions employed for

assessing and evaluating the attributes encapsulated by

the fields, aiding in decision-making processes within

the system.

6. Virtual Page Layout Definition

The definition of a virtual page layout encompasses

crucial details about the form object and its associated

fields, essential for the delivery of the page layout.

Presented below is a model for virtual page layout

configuration, which can be stored directly in a

database table or as JSON format.

On Page Layout Header: This serves as the primary

configuration entity storing vital information about the

page layout. By referencing the ID of this object, all

necessary configuration data for the page layout can

be retrieved. The header includes attributes such as

Title, ID (Primary Key), Type (Read-only, Create, or

Editable), Object Name (referring to the associated

object), Success Message, and Failed Message.

operations.

Page Layout Section: Designed to delineate various

sections within the page layout, facilitating the

organization of data. Each section is identified by a

unique ID and encompasses attributes like Title, Page

Layout Header (foreign key), and Disable Criteria,

allowing for section disabling based on specific

conditions.

Page Layout Field: This component defines the

individual fields within the page layout, crucial for

data input. Each field is assigned a unique ID and

includes attributes such as Name, Page Layout Section

(foreign key), Disable Criteria (criteria for field

disablement),

and Hide Criteria (criteria for field hiding based on

conditions). Validation Rules: The term "Validation

rules" pertains to the sophisticated validation criteria

mentioned earlier. It involves establishing a

comprehensive set of rules that must be met prior to

data storage. These rules serve as stringent criteria

ensuring the accuracy, integrity, and compliance of the

data being processed. By defining these rules,

developers can enforce strict validation protocols,

guaranteeing the reliability and consistency of the data

saved within the system.

Controlling Field: A "Controlling Field" is a pivotal

element dictating the rendering of the page layout,

characterized by its unique identification through the

object name and persona. Its attributes include an ID,

serving as the primary key for individual records, and

a "Value" parameter indicating the data value to

evaluate and determine the appropriate page layout for

rendering. Additionally, the "Persona" attribute

specifies for which user persona this definition is

intended. Crucially, the "Object Name" denotes the

referenced object's name, while the "Field Name"

signifies the specific field to observe for the

designated value. Lastly, the "Page Layout Header"

serves as a foreign key linking the controlling field to

the corresponding page layout header, delineating

which layout to display based on the evaluated value.

These components collectively form the virtual

framework for page layout configuration, enabling

efficient management and customization of form

layouts. The structured approach allows for seamless

retrieval and manipulation of configuration data,

empowering developers to tailor page layouts to

specific requirements. Whether stored in a database

table or JSON format, this model provides a versatile

solution for configuring and delivering dynamic page

layouts tailored to diverse application needs.

7. Runtime Delivery

The runtime delivery encompasses a defined lifecycle

aimed at executing insert or update actions pertinent to

the page layout. For the runtime to function

effectively, it necessitates essential information such

as the record ID, object name, and user persona details

to be provided. These details serve as crucial

parameters enabling the runtime to appropriately

configure its operations in accordance with the

specific requirements of the page layout.

On Load During the "On Load" phase, the runtime

initiates its operations by initializing the necessary

configurations and settings. This phase marks the

beginning of the runtime's execution cycle, wherein it

prepares to handle the loading of page layouts. By

leveraging the provided record ID, object name, and

user persona details, the runtime strategically adapts

its behavior to cater to the unique characteristics of the

http://jtipublishing.com/jti

Volume 2 Issue 4, October – December 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

associated page layout, ensuring seamless rendering

and interaction with the user interface.

Firstly, the runtime verifies the record ID and object

name for which the data is intended to be displayed. It

proceeds to retrieve the corresponding data for the

identified record. Simultaneously, it retrieves the

configuration settings that align with the specified

object and user persona.

Next, the runtime iterates through all configurations

that match the object name and the persona of the

logged-in user. It then proceeds to fetch the field value

from the record that corresponds to the retrieved

configuration settings.

Subsequently, the runtime retrieves the page layout

header information from the controlling field. It then

proceeds to fetch the details of the sections and fields

associated with the identified header, thus completing

the process of fetching the relevant page layout

configuration for rendering the data effectively. The

runtime engine conducts a check to determine if the

page layout sections include disable criteria. Upon

identification, it proceeds with the evaluation of these

criteria. Should the evaluation result in failure,

indicating that the criteria are not met, the respective

section is disabled as per the defined criteria.

Furthermore, the runtime engine verifies whether each

page field encompasses defined criteria. It

systematically assesses the presence of criteria for

each field. This comprehensive validation ensures that

all fields adhere to the specified criteria, maintaining

consistency and integrity within the page layout

configuration. Before Page Layout action Before

executing any page layout action, the system initiates

a validation process whereby it scrutinizes the

predefined validation criteria. Upon clicking the

layout action, if any validation rule fails to meet the

specified criteria, the action is not evaluated further.

This ensures that only actions conforming to the

established validation rules proceed, maintaining the

integrity and accuracy of the process.

Page Layout Action The page layout action involves

retrieving all data from the form fields according to the

defined page layout specifications. Subsequently, it

displays messages indicating success or failure based

on the outcome of the action. This process ensures that

the relevant data is accurately captured and that users

are promptly informed of the action's result, whether it

succeeds or encounters an issue.

8. Enhancements

8.1 Child Object Support

We By expanding the configuration capabilities, we

can introduce functionality to display both parent and

child data within the page layout. This enhancement

mirrors the relational structure found in databases,

where primary tables are linked to related tables

through foreign keys. With this feature, users gain a

comprehensive view of interconnected

data sets, facilitating a deeper understanding of

relationships within the system.

Furthermore, extending support for all types of actions

and criteria elevates the flexibility and versatility of

the configuration framework. Whether it's performing

data manipulations, executing conditional logic, or

enforcing validation rules, the enhanced configuration

empowers developers to tailor page layouts to a wide

range of use cases. This comprehensive support

ensures that applications can effectively handle

diverse scenarios, adapting dynamically to user

interactions and system requirements.

By embracing these enhancements, we unlock new

possibilities for designing intuitive and efficient user

interfaces. The ability to display parent-child data

relationships and support various actions and criteria

enriches the user experience while promoting

scalability and maintainability in software

development projects. to

8.2 Create One Object To Another

Introducing the capability to transition from one object

to another presents a significant enhancement to our

system's functionality. By incorporating source and

target objects, users gain the ability to seamlessly

navigate between related entities, expanding the scope

of data interactions. Central to this enhancement is the

implementation of mappings, which facilitate the

transfer of values from fields within the source object

to corresponding fields in the target object. This

mapping mechanism serves as a powerful tool,

enabling users to automate data propagation and

streamline workflow processes effectively.

With this feature in place, users can harness the full

potential of data connectivity within the system.

Whether it involves copying customer information to

associated orders, or transferring project details to

http://jtipublishing.com/jti

Volume 2 Issue 4, October – December 2021

Fully Refereed | Open Access | Double Blind Peer Reviewed Journal

http://jtipublishing.com/jti

related tasks, the ability to map and transfer data

between objects enhances efficiency and accuracy in

data management tasks. Furthermore, this feature

empowers users to create dynamic workflows that

adapt to changing business needs, improving

productivity, and facilitating informed decision-

making across various departments.

9. USES

By adhering to these principles, all form-based

platforms can harness the advantages of dynamic

adaptability, facilitating seamless integration of

requested changes.

9.1 CRM Platforms

The These principles can serve as foundational pillars

when constructing CRM platforms.

10. Conclusion

The discussion highlights the evolution of page layout

delivery mechanisms within software applications,

emphasizing the importance of dynamic and adaptable

solutions. Through the introduction of virtual page

layout definitions, developers gain a structured

framework to configure layouts efficiently, ensuring

flexibility and scalability. The integration of runtime

engines further enhances user experience by

orchestrating the seamless delivery of dynamic page

layouts tailored to specific user inputs and system

variables. Moreover, stringent validation protocols

uphold data integrity, while real-time feedback

mechanisms offer users instant insights into the

outcome of their interactions. Expanding

configuration capabilities to include parent-child data

display and support for various actions and criteria

enriches the functionality of the system, empowering

users with comprehensive data management

capabilities. Furthermore, the introduction of object-

to-object transitions with mapping capabilities

signifies a significant advancement, enabling

automated data propagation and streamlined workflow

processes. Overall, these enhancements underscore the

system's commitment to delivering intuitive and

efficient user interfaces, driving operational

excellence and fostering innovation across diverse

domains.

11. References

[1] Girgensohn, Andreas & Zimmermann, Beatrix &

Lee, Alison & Burns, Bart & Atwood, Michael.

(1995). Dynamic Forms: An Enhanced Interaction

Abstraction Based on Forms. 362-367. 10.1007/978-

1-5041-2896-4_60.

[2] Seckler, Mirjam & Heinz, Silvia & Bargas-Avila,

Javier & Opwis, Klaus & Tuch, Alexandre. (2014).

Designing Usable Web Forms – Empirical Evaluation

of Web Form Improvement Guidelines Web.

Conference on Human Factors in Computing Systems

- Proceedings. 10.1145/2556288.2557265.

[3] Dogdu, Erdogan & Hakimov, Sherzod &

Yumusak, Semih. (2014). A Data-Model Driven Web

Application Development Framework.

10.1145/2638404.2638522.

[4] Chen, Kuang & Chen, Harr & Conway, Neil &

Dolan, Heather & Hellerstein, Joseph & Parikh,

Tapan. (2009). Improving data quality with dynamic

forms. 2009 International Conference on Information

and Communication Technologies and Development,

ICTD 2009 - Proceedings. 487 - 487.

10.1109/ICTD.2009.5426738.

http://jtipublishing.com/jti

